Изменения свойств смазки и антифрикционных свойств подшипников скольжения в эксплуатации



ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра металлургического оборудования

РЕФЕРАТ

«Изменения свойств смазки и антифрикционных свойств подшипников скольжения в эксплуатации»

Общие сведения

Конструктивное совершенство и высокое качество изготовления и установки машины не гарантируют длительной и безаварийной ее работы. Дополнительными условиями являются грамотная техническая эксплуатация и целесообразная система ремонтов.

Изменение эксплуатационных свойств в их взаимосвязи с износом зависит от типа машины. Возьмем для примера автомобиль. Износ цилиндров, поршневых колец и поршней, лакообразование в цилиндрах и износ клапанов ухудшают герметичность рабочего пространства, в результате чего снижается среднее индикаторное давление, что влечет за собой уменьшение мощности двигателя и увеличение удельного расхода горюче-смазочных материалов. С потерей мощности двигателя ухудшаются тяговые качества автомобиля - возрастает время и путь разгона, понижается предельная скорость движения на той или иной передаче.

Износ деталей цилиндропоршневой группы, шатунных подшипников и деталей газораспределительного механизма приводит к усилению шума при работе двигателя. Увеличение зазоров в рулевом механизме, износ тормозных колодок и барабанов, тормозного кулака и шарнирных соединений тормозного привода ухудшают управляемость автомобиля и в связи с увеличением пути торможения понижают безопасность движения.

Важной предпосылкой правильного использования и грамотной эксплуатации машины является наличие ее технического описания, правил технической эксплуатации, основных правил техники безопасности при обслуживании машины, альбома чертежей и карты смазки. Указанная документация составляется под непосредственным руководством конструктора на основании опыта эксплуатации подобных машин, результатов исследовательских работ, стендовых и эксплуатационных испытаний опытных образцов.

Задачей технической эксплуатации машины является обеспечение ее исправного технического состояния и безаварийной работы при необходимой экономичности. Уровень технической эксплуатации машин определяется установкой их в надлежащем месте, рациональным использованием в соответствии с назначением, квалификацией обслуживающего персонала, постановкой ухода и технического надзора за машинами, организацией смазочного хозяйства [9].

Сданная в эксплуатацию машина или установка поступает в ведение лиц, управляющих ею и обслуживающих ее агрегаты.

Для обеспечения должного уровня технической эксплуатации к самостоятельному управлению машинами и их техническому обслуживанию допускаются лица, пригодные к данной работе по состоянию здоровья, отлично изучившие машины данного типа и получившие соответствующие свидетельства. Во многих случаях к управлению машинами не допускаются лица, не достигшие 18 лет. Знание обслуживающим персоналом правил технической эксплуатации и технических инструкций должно систематически проверяться.

Необходимые навыки в обращении с машиной вырабатываются у машиниста, станочника или оператора при длительной работе на ней. Поэтому к перестановке рабочего с машины на машину прибегают только при настоятельной необходимости.

Для надзора за оборудованием действуют органы технического надзора. В зависимости от характера оборудования технический надзор бывает государственный и местный или только местный. Государственный надзор осуществляют такие организации как Госавто- инспекция, Госавиаинспекция, Госгортехнадзор, Морской регистр и др. Вообще, в функции технического надзора входит надзор за монтажом оборудования, техническим состоянием машин и оборудования, выполнением правил управления машинами, их обслуживании, контроль за сроками и качеством выполнения ремонта, за испытанием оборудования и за ведением технической документации.

Органы Государственного технического надзора занимаются освидетельствованием, испытанием и разработкой норм проектирования машин и оборудования с точки зрения надежности работы и безопасности в обслуживании.

Цель технического ухода и ремонта - поддерживать работоспособность машины. Но если технический уход представляет собой совокупность мероприятий, направленных на борьбу с износом, то задачей ремонта является ликвидация последствий износа.

В одних отраслях народного хозяйства ремонт является элементом технической эксплуатации оборудования, в других он обособлен.

На практике расходы на ремонт могут достигать очень большой величины, превышая в некоторых случаях стоимость машины в несколько раз. Иногда расходы на ремонт поглощают большую часть доходов, приносимых машиной, что делает эксплуатацию машины нерентабельной.

В настоящее время ставится на очередь задача перехода набезремонтную эксплуатацию или ремонт без разборки машины.

Под последним термином понимается:

-устранение капитальных ремонтов;

-перевод узлов трения машины на смазывание их металлоплакирующими смазочными материалами;

Переход на безремонтную эксплуатацию является комплексной задачей. Решение этой задачи должно базироваться на следующем:

-переход от планово-предупредительной системы ремонта к ремонту по техническому состоянию;

-использование всевозможных методов повышения износостойкости трущихся деталей, основанных на эффекте безызносности (избирательном переносе при трении), включая конструктивные, технологические и эксплуатационные методы;

-использование в машине не изнашивающихся фиксирующих поверхностей трения, служащих при установке сменных деталей;

Приведем некоторые термины, относящиеся к третьей части книги, взятые из работы П.И. Орлова [4].

Долговечность машины есть общее время, которое она может отработать на номинальном режиме в условиях нормальной эксплуатации без существенного снижения основных расчетных параметров, с учетом всех ремонтов при экономически обоснованной их суммарной стоимости. Долговечность в наибольшей степени определяетсяизносостойкостью деталей.

Ресурс долговечности — время работы машины в часах до первого капитального ремонта.

Срок службы машины - это общая продолжительность пребывания ее в эксплуатации до полного исчерпания ресурса долговечности.

Надежность техники — свойство техники в течение заданного времени сохранять работоспособность, находиться в исправном состоянии и выполнять установленные функции. Надежность техники является комплексным параметром, включающим такие показатели, как безотказность техники, долговечность ее работы, ремонтопригодность и сохраняемость свойств. Надежность техники зависит как от качества инженерного проекта и особенностей конструкции, так и от качества изготовления и эксплуатации техники. На стадии проектирования и конструирования особое значение для обеспечения надежности имеют уровень инженерных решений, учитывающих свойства применяемых физических объектов и конструкционных материалов, методы и средства защиты от вредных воздействий извне и т.п. Усложнение конструкций техники обычно снижает ее надежность. Степень надежности техники определяется уровнем применяемой технологии, качеством изготовления узлов и деталей, качеством сборки и контроля продукции. Надежность техники зависит от условий и интенсивности ее эксплуатации, качества проводимых профилактических работ и ремонтов, использования диагностических средств и т.д. [4].

В начальный период эксплуатации надежность техники обычно ниже среднего уровня, поскольку происходит приработка деталей, выявляются основные недостатки изготовления. Надежность техники снижается в конце предусмотренного периода эксплуатации, так как начинают сказываться старение и износ, усталость материала и т.п. Определяющую роль в обеспечении надежности техники играют уровень квалификации, деловые и нравственные качества разработчиков, изготовителей, пользователей техники, а также соблюдение ими трудовой и технологической дисциплины.

В 1950-70-е гг. в связи с резким усложнением техники сформировалась комплексная отрасль науки, изучающая методы и приемы обеспечения надежности техники -теория надежности. Эта теория разрабатывает математические методы расчета и прогнозирования надежности техники, приемы обработки статистической информации, получаемой в ходе эксплуатации, разрабатывает структурные схемы устройств повышенной надежности. Недостаточная надежность приводит к снижению эффективности техники, росту сферы ее ремонта и обслуживания, к дополнительным расходам сил и средств.

Качество продукции - совокупность технических, эксплуатационных, экономических и других свойств, обусловливающих ее пригодность для удовлетворения определенных потребностей. Требования к качеству продукции постоянно возрастают под влиянием развития науки и техники, совершенствования производства, непрерывного роста потребностей общества, а также в связи с значительным расширением международных экономических связей, углублением международной специализации и кооперации. К главным показателям качества продукции относятся экономичность, производительность, надежность, долговечность, материало- и энергоемкость машин и изделий. Качество характеризуется еще эргономическими, эстетическими и экологическими показателями [4].

Теория долговечности (следовательно и надежности) находится еще в стадии формирования; ее задачами являются [4]:

-разработка методов изучения эксплуатации машин (статистическая обработка эксплуатационной информации);

-определение степени использования машин в эксплуатации и соотношения между долговечностью и сроком службы машин;

-диагностика причин изнашивания деталей и их разрушения;

-выявление наиболее изнашиваемых деталей, лимитирующих долговечность машины в целом;

- разработка методов стендовых и эксплуатационных испытаний машин, узлов и деталей на долговечность; прогноз эксплуатационной долговечности машин на основании стендовых испытаний;

-разработка объективных показателей долговечности выпускаемых машин.

По мнению П.И. Орлова, многочисленность и разнородность факторов, влияющих на долговечность (технический уровень эксплуатации, колебания эксплуатационных режимов, качество изготовления и т.д.), неопределенность многих факторов (рассеивание характеристик прочности и износостойкости материалов, влияние региональных и климатических условий и т.п.) заставляют при определении долговечности прибегать к методам теории вероятности и математической статистики. Вследствие этого теория не дает однозначного ответа на вопрос об ожидаемой долговечности, ограничиваясь установлением функциональных зависимостей вероятности износа и разрушения от продолжительности и режимов эксплуатации (рис. 1) [4].

Теория может только установить, что вероятная продолжительность работы машины на данном режиме будет равна 7,2; 10,5 и 15 тыс. ч при вероятности разрушения соответственно 90,80 и 60 %, или установить вероятное число остающихся в эксплуатации машин (процент выживания) после определенных периодов работы [4].

Выводы основываются на изучении находящихся в эксплуатации машин выпуска прошлых лет и всегда запаздывают, по существу они

Рис. 1. График вероятной долговечности:1 - вероятный срок службы (процент выживания);2 - вероятность разрушений; 3- плотность вероятностей срока службы

не приложимы к машинам новых выпусков, подвергаемым конструктивным и технологическим усовершенствованиям. При прогнозе долговечности новых машин, являющемся насущной практической задачей, приходится базироваться на стендовые испытания машин (или вводимых в них новых узлов).

Таким образом, одним из важнейших разделов теории долговечности является разработка методов ускоренных испытаний и корреляция результатов испытаний с эксплуатационными условиями.

Теория долговечности, строящая выводы на статистических данных, в сущности, пригодна к изделиям массового производства и в гораздо меньшей степени - к изделиям мелкосерийного, тем более единичного выпуска. Вообще же, теория долговечности в описанной выше трактовке исходит из феноменологических позиций, оперируя цифрамидостигнутой долговечности.

Гораздо большее значение имеет разработка методов повышения долговечности. Здесь на первый план выдвигается задача изучения физических закономерностей разрушения, износа и повреждения деталей (в зависимости от вида нагружения, свойств материла, состояния поверхностей и т.д.). Задачи эти настолько дифференцированы и специфичны, что вложить их в рамки общей теории долговечности вряд ли возможно. Они решаются методами триботехники, теории прочности и, главным образом, целенаправленной конструкторской и технологической работой над повышением долговечности.

Долговечность машины, как уже указывалось, определяется износостойкостью ее трущихся деталей. Постепенно развивающийся износ ведет к общему ухудшению показателей машины, снижению точности выполняемых ею операций, падению КПД, увеличению электропотребления и снижению полезной отдачи. С течением времени износ может перейти в катастрофическую стадию. Прогрессирующее повреждение поверхностей вызывает поломки и аварии (разрушение подшипников качения, выкрашивание зубьев зубчатых колес, заедание подшипников, поломка поршневых колец и т.п.).

Долговечность машины можно искусственно продлить при помощи восстановительных ремонтов.

В начальный период эксплуатации ремонтные расходы, как правило, невелики. Затем они скачкообразно возрастают по мере появления текущих и средних ремонтов и, наконец, достигают значительной величины, соизмеримой со стоимостью машины, когда машина подвергается капитальному ремонту. Перед сдачей в капитальный ремонт должен быть решен вопрос о целесообразности дальнейшей эксплуатации машины. Если оставить в стороне вопросы морального устаревания, то экономически целесообразным пределом эксплуатации надо, по-видимому, считать момент, когда предстоящие расходы на капитальный ремонт приблизятся к стоимости новой машины. Выгоднее приобрести новую машину, чем ремонтировать старую, тем более, что новые машины всегда превосходят по качеству машины, прошедшие ремонт, и тем более, что показатели новых машин в результате непрерывного технического прогресса всегда выше показателей старых машин. Вместе с тем, с течением времени закономерно снижается стоимость новых машин в связи с неуклонной интенсификацией и совершенствованием производственных процессов [4].

При решении вопроса о прекращении эксплуатации, кроме того должна быть учтена суммарная стоимость всех произведенных ранее ремонтов. В качестве ориентировочного правила можно считать, что суммарные затраты на ремонт за весь период службы машины не должны превышать ее стоимости [4].

Главным способом повышения износостойкости при абразивном износе является увеличение твердости трущихся поверхностей. Влияние поверхностной твердости на износостойкостьповерхностей, подвергнутых действию абразива (корунд), показано на рис. 2. За единицу принята износостойкость поверхности сНУ 500(НКС 48). Как видно из диаграммы, повышение твердости на каждые 500 единицНУ увеличивает износостойкость в 10 раз. Условия опыта (абразивный износ) отличаются от реальных условий работы смазанных поверхностей в узлах трения машин. Тем не менее, по мнению П.И. Орлова, они дают представление об огромном влиянии твердости на износостойкость.

30 40 50 60 70HRC

Рис. 2.Зависимость износостойкости деталей от поверхностной твердости(по Гудвину)

Современная технология располагает эффективными средствами повышения поверхностной твердости: цементация и обработка ТВЧ (ЯV500 - 600), азотирование (ЯК800 - 1200), бериллизация (ЯК 1000- 1200), диффузионное хромирование (ЯК 1200 - 1400), плазменная наплавка твердыми сплавами (ЯК1400 - 1600), борирование (НУ 1500 - 1800), бороцианирование (ЯК 1800 - 2000) [4].

Приведем еще один пример по упрочнению деталей цилиндров и поршневых колец. Испытания различных вариантов упрочнения деталей ЦПГ даны в табл. 1 [7].

Таблица 1

Результаты испытаний упрочненных деталей ЦПГ

Методы упрочнения

Средние значения максимального износа

И∙, мкм/км

гильз цилиндров

поршневых колец

Хромирование:

гильз

3,1

17,4

поршневых колец

7,8

14,8

Изотермическая закалка гильз

8,6

37,5

Нормализация колец

15,4

44,0

Без упрочнения

16,8

48,5

Испытания показывают, что хромирование цилиндров повышает их износостойкость в 3...5 раз, а соединенных с ними нехромиро- ванных колец в 2.. .3 раза. Однако учитывая, что поршневые кольца карбюраторных двигателей покрыты хромом, а при работе пара хром по хрому не работает (коэффициент трения 0,08... 1,0), в то же время хром по чугуну работает хорошо (при аналогичных условиях коэффициент трения хром по чугуну 0,06...0,08), то чугунные гильзы карбюраторных автотракторных двигателей не хромируют. Хромируют в основном цилиндры авиационных двигателей. Здесь поршневые кольца применяют из высоколегированных чугунов [6].

Другим направлением является улучшение антифрикционных свойств поверхностей путем использования методов, основанных на эффекте избирательного переноса (ФАБО, металлоплакирующие смазки, антифрикционные вставки, медьсодержащие чугуны и др.), осаждении фосфатных пленок (фосфатирование), насыщении поверхностного слоя серой (сульфидирование), графитом (графитирование), свинцом (свинцевание) и др. При умеренной твердости такие поверхности обладают малым коэффициентом трения, высокой устойчивостью против задиров и схватывания. Эти способы (особенно при режиме избирательного переноса) увеличивают износостойкость стальных деталей в 10-20 раз.

Важное значение имеет правильное сочетание твердости парных поверхностей трения. При движении со средними скоростями под высокими нагрузками целесообразно максимальное повышение твердости обеих поверхностей. При этом поверхности трения должны быть тщательно пригнаны одна к другой и приработаны. В качестве примера можно привести результаты длительных испытаний (более 1000 ч )пористохромированного подшипника скольжения, работающего в паре с шатунной шейкой коленчатого вала авиационного двигателя М-11. Износ трущейся пары по сравнению с традиционной парой (баббит - сталь) в этом случае был в 3 раза меньше [2].

При движении с большими скоростями в присутствии смазки - сочетание твердой поверхности с мягкой способствует повышению антифрикционных свойств. Еще раз подчеркнем, что наиболее целесообразным является создание на трущихся поверхностях сервовит- ной пленки в сочетании с серфинг-пленкой, разделяющих поверхности трения, исключающих непосредственный контакт и обеспечивающих безызносное трение.

У транспортных машин долговечность составляет 10... 20 тыс. ч и срок службы 5...8 лет, у стационарных, например машин-орудий,— 50 ... 100 тыс. ч, что при двухсменной работе соответствует сроку службы 15-25 лет, при трехсменной работе— 10...20 лет. При таких сроках службы становится актуальной проблема морального устаревания.

Вопросы повышения долговечности и морального устаревания техники тесно связаны между собой. Моральное устаревание наступает, когда машина, сохраняя физическую работоспособность, по своим показателям перестает удовлетворять промышленность в силу повышения требований или появления более совершенных машин.

Признаками морального устаревания являются пониженные по сравнению со средним уровнем показатели надежности, качества продукции, производительности, расхода электроэнергии на единицу продукции, стоимости рабочей силы при обслуживании и ремонте и, как общий результат, - сниженная рентабельность машины.

Моральное устаревание не связано с физическим износом.

Рассматривая в настоящее время общее положение дел с качеством технической продукции в России, нельзя не процитировать некоторые тезисы из статьи В.А. Бокова, специалиста в области надежности машин, “Кризис методов обеспечения качества продукции” [1]:

-качество основной массы продукции нельзя признать удовлетворительным и соответствующим мировым стандартам:

-рекомендации науки и разработанные на их основе руководящие документы (ГОСТы, справочники, методические указания и др.) в основном малоэффективны, так как рассчитаны на узкий круг спе- циалистов-теоретиков и далеки от практики;

-практические инженерно-технические мероприятия по повышению качества продукции носят поверхностный характер из-за слабости экспериментальной базы и не вскрывают глубинных первопричин дефектов продукта;

Необходимость улучшения ситуации с качеством продукции диктуется, как отмечает В. А. Боков, тем обстоятельством, что, начиная с 1970-х гг. в мировое экономическое развитие вмешались такие факторы, как энергетический кризис, экологические ограничения и дефицит трудовых ресурсов, которые свели к абсурду выпуск низкокачественной продукции. Положение усугубляется ослаблением координации работ по проблеме качества в связи с изменением общественного устройства и его демократическим реформированием на пути к рыночной экономике.

Приведенные пояснения по неудовлетворительному состоянию качества продукции целиком относятся к развитию и использованию методов повышения износостойкости машин и механизмов, новых более эффективных технологических процессов обработки трущихся деталей, к разработке и применению методов безразборного восстановления узлов трения и машин в целом.

В связи с этим следует продолжить начатый анализ, выполненный, В. А. Боковым о кризисе методов обеспечения качества продукции. Он пишет: “ Математический аппарат, предлагаемый для оценки качества и надежности, доступен из-за своей сложности только узкому кругу теоретиков и его можно отнести, по справедливому определению академика Л. Понтрягина, к “математической мистификации”. Этот аппарат создает завесу математической абстракции и является бутафорией, прикрывающей практическую неэффективность трудов, посвященных надежности и управлению качеством.

Исходные статистические данные, используемые в расчетах при оценке или управлении качеством, утеряли первоначальный физический смысл и связи с законами природы и производства. Это, например, прямо следует из утверждения, что “предметом математической статистики является формальная математическая сторона статистических методов исследования, безразличная к специфической природе изучаемых объектов” (МСЭ т. 5)”.

Наличие кризиса и его углубление, вызванное принципиальными расхождениями между теоретической и практической сторонами проблемы качества В.А. Боков объясняет следующими причинами:

- развитие теоретических основ качества и надежности происходило на волне общей тенденции возрастания роли научных исследований, в частности математических методов в технике;

-математизация методов обеспечения качества и надежности облегчала и ускоряла нахождение требуемых зависимостей, освобождая от затрат усилий и средств на отыскание и исследование истинных закономерностей, связанных с физической сущностью объектов;

-наукообразие основ управления качеством и надежностью не позволяло сомневаться в их истинности без риска быть обвиненным в посягательстве на науку либо просто в безграмотности;

-возможность опоры на “высокую науку”, хотя и уводившую в дебри математической абстракции, формализма и схоластики, устраивала не только разработчиков теоретических основ, но и изготовителей продукции, фактически освобождая их от ответственности за конечные результаты. Кризис поразил, хотя и в меньшей степени, развитые промышленные страны, за исключением Японии. Годами упорного труда японские специалисты выбирали из мирового опыта такие приемы и подходы, которые можно легко применить без специальной математической подготовки. Это позволило создать и широко использовать систему, решающую основные проблемы управления качеством[1].

Несомненно, сказанное относится к развитию и использованию триботехнических методов повышения качества машиностроительной продукции. Приведем лишь несколько примеров, подтверждающих такое мнение. Так, например, в некоторой технической литературе, изданной за три последние десятилетия, включая учебники и учебные пособия по трибологии, отсутствуют данные по физике отказов узлов трения машин, доказательства механизмов отдельных видов изнашивания и повреждений поверхностей трения методами электоронной микроскопии, спектроскопии, меченых атомов, металлографических исследований, рентгеноскопии, использования фото как объективных документов и т.п. Кандидатские и докторские работы в некоторых случаях заканчиваются разработкой математических моделей, из которых не вытекает конкретных, проверенных на практике, рекомендаций по повышению надежности трущихся деталей и узлов машин и механизмов. В ряде изданий по триботехнике, рекомендованных как учебники или учебные пособия, без особого физического анализа излагаются математические выкладки по отдельным процессам, разобраться в которых не только студенту, но и преподавателю затруднительно.

Можно полагать, что с подъемом промышленности и развитием конкуренции в решении задач по повышению качества машиностроительной продукции будет востребован прежний арсенал тонких физико-химических методов исследования поверхностных слоев трущихся деталей, вновь разовьются лабораторные и стендовые испытания образцов, деталей и узлов машин.

В будущем при эксплуатации машин найдут более широкое применение методы повышения износостойкости узлов трения, основанные на эффекте безызносности. Однако использование таких методов требует специальной подготовки обслуживающего персонала, как в части теоретических знаний, так и практических навыков.

Необходимо обратить внимание на то, что в последние годы в популярной технической литературе появилось много рекламных материалов о новых препаратах российского и зарубежного производства, применение которых в эксплуатации даст потрясающие результаты по экономии топлива, повышению ресурса и других эксплуатационных характеристик машин. Некоторые из них не обоснованы с научной точки зрения, не исследованы и не дают ожидаемых результатов. Иногда авторы, без проведения необходимых исследований, ссылаются на эффект безызносности, который якобы проявляется при применении разработанных препаратов, но на других принципах, отличных от избирательного переноса (эффекта безызносности). Поясним это.

Эффект безызносности, как явление природы, может быть только один так же как нет нескольких эффектов Ребиндера, явлений сверхпроводимости или сверхпластичности и др. При работе узлов трения детали могут не соприкасаться между собой (например при газовой или гидродинамической смазке). В этом случае износ деталей может быть равен нулю, однако это в научном плане не является эффектом безызносности. Иногда авторы при экспериментах вследствие малой чувствительности метода измерения износа его не улавливают и выдают это как безызносность, не анализируя физических причин “безызносности”.

В связи с изложенным ниже будут даны лишь некоторые основные аспекты в области проявления эффекта безызносности и его механизма.

Эффект безызносности.Напомним, что на основе эффекта безызносности разработаны новые износостойкие материалы, конструкции узлов трения и смазки, которые позволяют:

-повысить ресурс машин и механизмов;

-снизить расход топлива и смазочных материалов;

-сократить потребление запасных частей, время регламентных работ;

-в некоторых случаях заменить смазку маслом на смазку водой;

-улучшить эксплуатационные характеристики машины (улучшить запуск двигателя внутреннего сгорания, снизить трение в соединениях машины);

-улучшить экологическую обстановку при работе двигателей внутреннего сгорания;

-без разборки двигателя поднять его эксплуатационные характеристики и др.

Все это проверено на практике и описано в учебнике [3], а также в журнальных статьях, сборниках и трудах конференций. Применение эффекта безызносности в промышленности не требует больших капитальных затрат и может быть реализовано на любом транспортном и промышленном предприятии.

Избирательный перенос апробирован и применяется в ряде отраслей промышленности: авиационная техника, морской флот, тяжелое машиностроение, легкая промышленность, железнодорожный транспорт, станкостроение, машины горнорудной промышленности и др. Однако не стоит упрощать механизм эффекта безызнос- ности.

К механизму реализации эффекта безызносности при трении в паре сталь -медный сплав.Рассмотрим реализацию эффекта безызносности пары сталь - бронза при смазывании ее глицерином.

  1. При трении глицерин восстанавливает оксидные пленки на поверхностях трения медного сплава и стали.
  2. Далее глицерин начинает растворять поверхность трения медного сплава, удаляя с поверхности легирующие элементы: алюминий, олово, цинк, железо и др.
  3. Легирующие элементы медного сплава уходят в смазочный материал и с лигандами смазочного материала образуют координационные (комплексные) соединения.
  4. Поверхность медного сплава постепенно обогащается атомами меди. Диффузия легирующих элементов из медного сплава к по поверхности и переход их в смазку происходит до тех пор, пока на поверхности медного с