Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации



Оглавление

I. Понятие информации. Общая характеристика процессов сбора, передачи, обработки и накопления информации

1.1. Основные понятия информатики

Информатика– научная дисциплина, изучающая вопросы, связанные с поиском, сбором, хранением, преобразованием информации в самых разных сферах человеческой деятельности.

Генетически информатика связана с вычислительной техникой, компьютерными системами и сетями, так как именно компьютеры позволяют порождать, хранить и автоматически перерабатывать информацию в таких количествах, что научный подход к информационным процессам становится одновременно необходимым и возможным.

В качестве источников информатики можно назвать две науки –документалистику икибернетику.

Документалистика сформировалась в конце 19 века в связи с бурным развитием производственных отношений. Ее расцвет пришелся на 20-30 годы 20 века, а основным предметом стало изучение  рациональных средств и методов повышения эффективности документооборота.

После второй мировой войны возникла и начала бурно развиваться кибернетика.

Кибернетика – это наука об общих принципах управления в живых и искусственных системах: технических, биологических, социальных и др.

Рождение кибернетики принято связывать с опубликованием в 1948 году американским математикомНорбертом Винером книги «Кибернетика или управление и связь в животном и машине». В этой книге были показаны пути создания общей теории управления и заложены основы методов рассмотрения проблем управления и связи для различных систем с единой точки зрения. Сам термин «кибернетика» происходит от греческого словаkiberneticos – искусный в управлении.

Развиваясь одновременно с развитием электронно-вычислительных машин (ЭВМ), кибернетика со временем превращалась  в более общую науку о преобразовании информации.

Вслед за термином “кибернетика” в мировой науке стало использоваться англязычное –Computerscience наука о компьютерной технике.

Позднее в 70-х годах французы ввели терминinformatique, образованный путем слиянияinformation (информация) иautomatique (автоматика), и обозначающий – наука об автоматической обработке информации.

Главная функция информатики – разработка методов и средств преобразования информации и их использования в организации технологического процесса переработки информации.

Задачи информатики:

  • Исследование  информационных процессов любой природы.
  • Разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов.
  • Решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.

1.2. Информация. Информационные процессы

Термин “информация” происходит от латинского informatio, что означает разъяснение, осведомление, изложение

Понятиеинформация является одним из фундаментальных в современной науке вообще и базовым для информатики. Информацию наряду с веществом и энергией рассматривают в качестве важнейшей сущности мира, в котором мы живем. Однако если задаться целью формально определить понятие «информация», то сделать это будет чрезвычайно сложно. Аналогичными «неопределяемыми» понятиями, например, в математике является «точка» или «прямая». Так, можно сделать некоторые утверждения, связанные с этими математическими понятиями, но сами они не могут быть определены с помощью более элементарных понятий.

В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.

Информация – сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают степень неопределенности, неполноты имеющихся о них знаний.

Одной из важнейших разновидностей информации является информация экономическая. Ее отличительная черта – связь с процессами управления коллективами людей, организацией. Экономическая информация сопровождает процессы производства, распределения, обмена и потребления материальных благ и услуг.

Экономическая информация – совокупность сведений, отражающих социально-экономические процессы и служащих для управления этими процессами и коллективами людей в производственной и непроизводственной сфере.

С понятием информация связаны такие понятия, каксообщение, сигнал, данные.

Сообщение– это информация, передаваемая в определенной форме представления.

Примерами сообщений являются музыкальное произведение; телепередача; команды регулировщика на перекрестке; текст, распечатанный на принтере; данные, полученные в результате работы составленной вами программы и т.д.

Можно привести следующуюклассификацию форм представления информации человеком:

  • Текст на естественном языке в устной или письменной форме.
  • Графическая форма: рисунки, схемы, чертежи, карты, графики, диаграммы.
  • Символы формального языка: числа, математические формулы, ноты, химические формулы и пр.

Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертёж, радиопередача и т.п.) может содержать разное количество информации для разных людей — в зависимости от их предшествующих знаний, от уровня понимания этого сообщения и интереса к нему.

Так, сообщение, составленное на японском языке, не несёт никакой новой информации человеку, не знающему этого языка, но может быть высокоинформативным для человека, владеющего японским. Никакой новой информации не содержит и сообщение, изложенное на знакомом языке, если его содержание непонятно или уже известно.

Информация есть характеристика не сообщения, асоотношения между сообщением и его потребителем. Без наличия потребителя, хотя бы потенциального, говорить об информации бессмысленно.

В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Действия, выполняемые с информацией, называютсяинформационными процессами.

Информационные процессы: поиск, сбор, хранение, передача, обработка, использование, защита и некоторые другие. Среди перечисленных можно выделить три основных типа информационных процессов:хранение, передача, обработка. Остальные информационные процессы в той или иной мере можно отнести к одному из трех типов.

1) Хранение информации. С процессом хранения информации связано понятиеносителя.

Носитель – это среда для записи и хранения информации.

Виды носителей:

  1. вещественные объекты: графитовый, чернильный или иной след на бумаге, дерево, камень, шнур – для хранения информации может использоваться либо количество объектов (щепок, камешков), либо изменение их (зарубки, срезы, узелки), бородка ключа с выемками и бороздками, соответствующими замку, оптический диск с нанесенными  неровностями поверхности и т.д.;
  2. волны и поля различной природы: акустические (звуковые) волны, электромагнитные волны (свет, радиоволны, низкочастотные электромагнитные колебания и др.), электростатический заряд, гравитационное поле (тяготение) и т.д.;
  3. состояние вещества: температура, давление, объем (изменение объема столбика жидкости в термометре дает информацию о температуре), концентрация раствора, уровень намагниченности (участки с разной намагниченностью ферропокрытия магнитных лент и дисков), состояние нервных волокон человеческого мозга и т.д.

2) Обработка информации – это преобразование одного вида информации в другой по строгим формальным правилам.

Примеры такой обработки информации.

  • Получение новой информации из исходной путем выполнения над нею математических и логических операций (вычисление дискриминанта квадратного уравнения и определение наличия его корней в результате сравнения дискриминанта с нулем).
  • Представление информации в различных формах без изменения содержания (текст, записанный на разных языках или в зашифрованном виде).
  • Расположение информации в определенном порядке (сортировка по алфавиту).
  • Поиск информации, удовлетворяющей заданным требованиям, в большом информационном массиве (книги по заданной теме в библиотеке, номер авиарейса в нужном направлении в подходящее время).

3) Передача информация осуществляется в видесообщений от некоторогоисточника информации к еёприёмнику посредствомканала связи между ними. Так, при передаче речевого сообщения в качестве такого канала связи можно рассматривать воздух, в котором распространяются звуковые волны, а в случае передачи письменного сообщения (например, текста, распечатанного на принтере) каналом сообщения можно считать лист бумаги, на котором напечатан текст.

Передача информации по каналам связи часто сопровождается воздействиемпомех, вызывающих искажение и потерю информации, в этом случае предусматриваютзащиту от помех.

Сигналспособ передачи информации.Он представляет собой физический процесс, имеющий информационное значение.

Источник посылаетпередаваемое сообщение, котороекодируется в передаваемый сигнал. Этот сигнал посылается поканалу связи. В результате в приёмнике появляетсяпринимаемый сигнал, которыйдекодируется и становитсяпринимаемым сообщением.

С позиции информатики ей важен факт регистрации сигналов. Результат регистрации сигналов информатика рассматривает как данные.

Таким образом, в информатикеданныеэто зарегистрированные сигналы.

Данные– это информация, представленная в формализованном виде и предназначенная для обработки ее техническими средствами, например, ЭВМ.

1.3. Свойства и виды информации

Для потребителя информации очень важны следующие ее свойства:

Достаточность(полнота) информации означает, что она содержит минимальный, но достаточный для принятия правильного решения состав (набор показателей).

Доступность информации восприятию пользователя обеспечивается выполнением соответствующих процедур ее получения и преобразования. Например, в информационной системе информация преобразовывается к доступной и удобной для восприятия пользователя форме.

Актуальность информации определяется степенью сохранения ценности информации для управления в момент ее использования и зависит от динамики изменения ее характеристик и от интервала времени, прошедшего с момента возникновения данной информации.

Своевременность информации означает ее поступление не позже заранее назначенного момента времени, согласованного со временем решения поставленной задачи.

Точность информации определяется степенью близости получаемой информации к реальному состоянию объекта, процесса, явления и т.п.

Достоверность информации определяется ее свойством отражать реально существующие объекты с необходимой точностью. Измеряется достоверность информации доверительной вероятностью необходимой точности, т.е. вероятностью того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности.

Устойчивостьинформации отражает ее способность реагировать на изменения исходных данных без нарушения необходимой точности.

Также можно отметить такие свойства какобъективность, полезность (ценность), понятность, адекватность.

Классифицировать информацию можно по разным признакам.

По способу восприятия:

  1. зрительная (визуальная) – воспринимаемая с помощью глаз;
  2. звуковая (аудиальная) – воспринимаемая на слух;
  3. тактильная – воспринимаемая с помощью осязания, на ощупь;
  4. вкусовая – восприятие вкусовых ощущений;
  5. обонятельная – восприятие запахов.

По форме представления:

  1. текстовая;
  2. числовая ;
  3. графическая;
  4. звуковая.

По месту возникновения:

  1. входная – информация, поступающая в фирму или ее подразделения;
  2. выходная – информация, поступающая из фирмы в другую фирму, организацию (подразделение);
  3. внутренняя – информация возникает внутри объекта;
  4. внешняя – информация за пределами объекта.

Пример: содержание указа правительства об изменении уровня взимаемых налогов для фирмы является, с одной стороны, внешней информацией, с другой стороны – входной. Сведения фирмы в налоговую инспекцию о размере отчислений в госбюджет являются, с одной стороны, выходной информацией, с другой стороны – внешней по отношению к налоговой инспекции.

По стадии обработки:

  1. первичная – информация, которая возникает непосредственно в процессе деятельности объекта и регистрируется на начальной стадии;
  2. вторичная – информация, которая получается в результате обработки первичной информации и может быть промежуточной и результативной;
  3. промежуточная информация используется в качестве исходных данных для последующих расчетов;
  4. результативная информация получается в процессе обработки первичной и промежуточной информации и используется для выработки управленческих решений.

По стабильности:

  1. переменная информация отражает фактические количественные и качественные характеристики производственно-хозяйственной деятельности фирмы; она может меняться для каждого случая как по назначению, так и по количеству, например, количество произведенной продукции за смену, еженедельные затраты на доставку сырья и т.п.;
  2. постоянная (условно-постоянная) – это неизменяемая и многократно используемая в течении длительного периода времени информация. Она делиться на справочную (номер цеха, табельный номер сотрудника), нормативную (размер налога на прибыль, размер минимальной оплаты труда) и плановую (план подготовки специалистов, план выпуска продукции).

По функциям управления обычно классифицируютэкономическую информацию:

  1. плановая – информация о параметрах объекта управления на будущий период (план выпуска продукции, ожидаемый спрос на продукцию);
  2. нормативно-справочная информация содержит нормативные и справочные данные (оклад служащего, адрес поставщика или покупателя, среднедневная оплата рабочего по разряду);
  3. учетная – информация, которая характеризует деятельность фирмы за определенный прошлый период времени (количество проданной продукции за определенный период времени);
  4. оперативная (текущая) – информация, используемая в оперативном управлении и характеризующая производственные процессы в текущий (данный) период времени (количество изготовленных деталей за час, смену; объем сырья от поставщика на начало рабочего дня).

II. Технические средства реализации информационных процессов

2.1. История развития вычислительной техники

Вычислительная машина - это техническое устройство обработки информации. Кроме обработки информации, вычислительная машина выполняет функции ввода, хранения и вывода информации. В развитии вычислительной техники отмечают предысторию и четыре поколения ЭВМ.

Предыстория начинается в древности с пальцевого счета и различных счетных инструментов (абак, счеты и пр.). Первая счетная машина (1642 г., французский математик Блез Паскаль). Затем (1673 г.) - немецкий математик Лейбниц (выполняла все четыре арифметических действия). Идея программно-управляемой счетной машины (1822 г., английский математик Чарльз Бэббидж).

1 поколение ЭВМ (с 1946 г.). Элементная база - электронные лампы. 10-20 тысяч операций в секунду. Программное обеспечение - машинные языки. Область применения - расчетные задачи. Примеры: ЭНИАК и ЭДВАК – США, МЭСМ - СССР.

2 поколение ЭВМ (60-е годы). Элементная база - полупроводниковые элементы. 100-150 тысяч операций в секунду. Программное обеспечение - алгоритмические языки, диспетчерские системы. Область применения - инженерные, научные, экономические задачи. Примеры: IBM 701 – США, БЭСМ-4, БЭСМ-6 – СССР.

3 поколение ЭВМ (70-е годы). Элементная база - интегральные микросхемы. 1млн. операций в секунду. Программное обеспечение: +операционные системы. Область применения - научно-технические задачи, автоматизированные системы управления (АСУ), системы автоматизированного проектирования (САПР). Примеры: IBM 360/370 - США, ЕС 1030, 1060 - СССР.

4 поколение ЭВМ. Элементная база - большие интегральные схемы (БИС). Десятки и сотни миллионов операций в секунду. Развитие прикладного программного обеспечения. Появление персональных компьютеров. Область применения - управление, создание автоматизированных рабочих мест, организация хранения больших массивов данных и удобного доступа к ним, развитие систем телекоммуникаций.

5 поколение ЭВМ. Должны разрабатываться иные по стилю обработки информации и взаимодействию с пользователем поколение машин.

Если раньше человек тщательно формулировал машине последовательность действий (программу), то теперь машина должна самостоятельно по поставленной перед ней цели составить план действий и выполнить их. Такой способ решения задач называется логическим программированием. Планируется вести общение с машиной на естественном языке. В совершенствовании будущих машин видны два пути:

На физическом уровне – это использование совершенно иных физических принципов построения узлов ЭВМ – на основе оптоэлектроники – использующей оптические свойства материалов, на базе которых создаются процессор и оперативная память и криогенной электроники использующей сверхпроводимость при очень низких температурах.

На уровне совершенствования интеллектуальных способностей – создание систем искусственного интеллекта.

2.2. Архитектура ЭВМ

Архитектура ЭВМ – общее описание её структуры и функций, достаточное для понимания принципов работы и системы команд ЭВМ, но скрывающее детали её технического и физического устройства.

Персональный компьютер – это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения.

Структура компьютера это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов.

Функциикомпьютера можно разделить на основные и дополнительные.

Основные функции определяют его назначение: обработка и хранение информации, обмен информацией с внешними объектами.

Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают режимы ее работы, диалог с пользователем, высокую надежность и др. Названные функции ПК реализуются с помощью ее компонентов: аппаратных и программных.

Классическая архитектура ЭВМ

Основы учения об архитектуре ЭВМ заложил выдающийся американский математикДжон фон Нейман. В 1945 г. Джон фон Нейман подготовил доклад. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем Джон фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров.

Основные из них:

Схема классической архитектуры компьютера («фон-неймановская архитектура»)

Разработанные Джоном фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальны, что получили название «фон-неймановской архитектуры». Основными блоками по Нейману являются (см. рис. 2): устройство управления УУ, АЛУ, память (внутренняя и внешняя), устройства ввода и вывода. Устройство управления и арифметически-логическое устройство обычно объединяются в одно, называемое центральным процессором.

Процессор – центральный блок компьютера, предназначенный для обработки информации и управления работой компьютера в целом. Конструктивно процессор представляет собой микросхему (или блок микросхем). Микросхема (интегральная схема) – сложная электронная схема, образованная большим количеством электронных элементов, сформированных на поверхности кристалла кремния (или другого полупроводника).

В его составе два основных устройства: арифметико-логическое устройство (предназначено для обработки информации, выполнения арифметических и логических операций над данными); устройство управления – управляет работой компьютера (формирует и подает во все блоки машины в нужные моменты времени определенные управляющие сигналы).

Память

Основное предназначение памяти – хранение информации. Различают внутреннюю и внешнюю память компьютера.

Внутренняя память реализуется в виде микросхем. Высокая скорость обмена сигналами с процессором, что обеспечивает быстрый доступ к хранимой информации. Ёмкость внутренней памяти невелика в сравнении с ёмкостью внешних носителей информации. В составе внутренней памяти выделяют оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ). ОЗУ предназначена для хранения информации, с которой компьютер работает в данный момент. Зависит от источника питания, содержимое исчезает при его отключении. ПЗУ предназначено для хранения информации, к которой необходим быстрый доступ, но нет возможности с каждым новым включением загружать ее в ОЗУ. Такая информация записывается в ПЗУ в заводских условиях и в дальнейшем может быть только прочитана.

Внешняя память. К ней относятся накопители на магнитных и оптических дисках вместе с носителями информации, электронные устройства внешней памяти – флэш-память. Их функция – обеспечить чтение и запись информации на внешние носители. Если накопитель работает с дисками, то его называют дисководом. Например, дисковод жестких дисков, дисковод гибких дисков, дисковод компакт-дисков.

Внешние устройства

Внешние устройства ПК (устройства ввода, вывода и обмена данными) предназначены для обмена информацией между компьютером и окружающим миром.

Устройства ввода: клавиатура, манипуляторы (мышь, джойстик, трекбол), сканеры, видеокамеры, датчики измерительных приборов и т.д.

Устройства вывода: монитор, принтер, графопостроитель, исполнительные механизмы, синтезаторы звука и речи и др.

Устройства обмена информацией выполняют одновременно и функцию ввода, и функцию вывода. К ним относится модем.

Магистрально-модульная или шинная архитектура компьютера

С развитием техники классическая архитектура Неймана не могла не претерпеть определенных прогрессивных изменений.

Переход от транзисторов к интегральным схемам создали предпосылки для существенного роста быстродействия процессора. Возникло противоречие между высокой скоростью обработки информации внутри машины и медленной работой устройств ввода-вывода, в большинстве своем содержащих механические движущиеся части. Процессор, руководивший работой внешних устройств, значительную часть времени был вынужден простаивать в ожидании информации «из внешнего мира», что снижало эффективность работы всей ЭВМ в целом.

Для решения этой проблемы возникла тенденция к освобождению центрального процессора от функций обмена и к передаче их специальным электронным схемам – контроллерам.

Контроллеры можно рассматривать как специализированные процессоры, управляющие работой «вверенных им» внешних устройств, т.е. эти устройства служат для управления внешними устройствами. Каждому внешнему устройству соответствует - свой контроллер. Электронные модули-контроллеры реализуются на отдельных печатных плат а х, вставляемых внутрь системного блока. Такие платы часто называют адаптерами ВУ (от адаптировать - приспосабливать). После получения команды от микропроцессора контроллер функционирует автономно, освобождая микропроцессор от выполнения специфических функций, требуемых для того или другого конкретного ВУ.

Передача данных и управляющих сигналов между всеми устройствами компьютера происходит черезмагистраль (системная шина, общая шина) микропроцессора, включающую шину адреса, двунаправленную шину данных и шину управления. Магистраль – это кабель, состоящий из множества проводов.

Шина адреса используется для передачи адресов ячеек памяти и регистров для обмена информацией с внешними устройствами.

Шина данных обеспечивает передачу обрабатываемой информации между МП, памятью и периферийными устройствами. Шина двунаправленная, т.е. позволяет осуществлять пересылку данных как в прямом, так и в обратном направлении.

Шина управления предназначена для передачи управляющих сигналов - управления памятью, управления о бменом данных, запросов на прерывание и т.д.

Схема магистрально-модульной или шинной архитектуры компьютера (рис. 3)

к – контроллер или адаптер

Для большинства современных персональных компьютеров реализованпринцип открытой архитектуры (или магистрально-модульный принцип), согласно которому можно легко менять состав устройств персонального компьютера благодаря тому, что все блоки компьютера подключаются к магистрали.

2.3. Состав и назначение основных элементов персонального компьютера

Базовая (типовая) конфигурация современного ПК

Конфигурация – это состав вычислительной системы. В настоящее время в базовой конфигурации рассматривают следующие устройства:

Системный блок – представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока называют внутренними, а устройства, подключаемые к нему снаружи – внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

В состав системного блока входят:

  1. Материнская плата.
  2. Жесткий диск.
  3. Дисковод гибких дисков.
  4. Дисковод компакт-дисков.
  5. Контроллеры внешних устройств.
  6. Разъемы для подключения внешних устройств.
  7. Блок электропитания.
  8. Дополнительные устройства (вентилятор, таймер и др.)

Краткая характеристика устройств системного блока

Системная (материнская) плата

На материнской плате обычно располагаются следующие устройства:

Процессор

Основная микросхема компьютера, в которой производятся все вычисления.

В состав МП входят:

  1. устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы;
  2. арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией;
  3. регистровая память (МПП)- служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Эта память состоит из ячеек, которые называются регистрами. Регистры – быстродействующие ячейки памяти различной длины. Обработка информации происходит только в регистрах процессора.

Основными характеристиками процессоров являются: разрядность, тактовая частота, модель (тип).

Разрядность процессора показывает, сколько бит данных он может принять и обрабатывать в своих регистрах за один раз (за один такт). Чем больше это количество, тем больше информации в единицу времени может быть обработано. Разрядность процессора зависит от разрядности регистров его собственной памяти, в которых размещаются обрабатываемые данные, поступившие из внутренней памяти (информация между процессором и внутренней памятью передается целыми машинными словами).

Первые процессоры семейства х86 были 16-разрядными. Современные процессоры семейства Intel Pentium являются 32 и 64-разрядными.

Тактовая частота показывает, сколько элементарных операций (тактов) микропроцессор выполняет в одну секунду. Исполнение каждой команды занимает определенное количество тактов. Чем больше тактов выполняется в единицу времени, тем выше скорость работы компьютера. Таким образом, тактовая частота – количество тактов в секунду – является одной из важнейших характеристик процессора.  Она измеряется в мегагерцах (МГц), гигагерцах (ГГц). В компьютере тактовые импульсы задает одна из микросхем – генератор тактовых импульсов. Генератор тактовых импульсов с определенной частотой вырабатывает специальные сигналы – тактовые импульсы, поступающие на устройства компьютера и таким образом синхронизирует их работу. Частота генерируемых импульсов определяет тактовую частоту машины.

Частота генерируемых импульсов является одной из основных характеристик ПК и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не более 4,7 МГц, а сегодня тактовые частоты уже превосходят несколько миллионов тактов в секунду (МГц) и даже несколько миллиардов тактов в секунду (ГГц).

Модель. Определяется фирмой изготовителем. Известные модели: Intel80386, Intel80486, Intel Pentium, Intel Pentium Pro, Intel Pentium 2, Intel Pentium 3, Intel Pentium 4, Intel Celeron, Intel Xeon, а также микропроцессоры фирм AMD Duron, AMD Athlon, Cyrix и др.

Внутренняя память

Внутренняя память реализуется в виде микросхем. Высокая скорость обмена сигналами с процессором, что обеспечивает быстрый доступ к хранимой информации. Ёмкость внутренней памяти невелика в сравнении с ёмкостью внешних носителей информации. В составе внутренней памяти выделяют оперативное запоминающее устройство (ОЗУ) и постоянное запоминающее устройство (ПЗУ), кэш-память, CMOS-память.

Оперативное запоминающее устройство (ОЗУ)

Это устройство, предназначенное для хранения выполняющихся в текущий момент времени программ, а также данных, необходимых для их выполнения. Это набор микросхем, предназначенных для временного хранения данных, когда компьютер включен. В ОЗУ хранится текущая информация (то есть программа и данные) по решаемой задаче, причем она может как считываться, так и записываться. Зависит от источника питания, содержимое исчезает при его отключении. Объем оперативной памяти влияет на производительность компьютера. Современные программы требуют оперативной памяти сотни мегабайтов.

Постоянное запоминающее устройство (ПЗУ)

ПЗУ предназначено для хранения информации, к которой необходим быстрый доступ, но нет возможности с каждым новым включением загружать ее в ОЗУ. Такая информация записывается в ПЗУ в заводских условиях и в дальнейшем может быть только прочитана.

Кэш-память

Специальная сверхбыстродействующая память небольшого объема (128-512 Кбайт), которая располагается как бы «между» микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск нужных данных в кэш-памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже содержатся в кэш-памяти, среднее время доступа к памяти уменьшается.

CMOS-память

Это микросхема памяти для хранения параметров конфигурации компьютера. Эта память выполнена по специальной технологии «CMOS», обладающей низким электропотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера. Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате.

Устройства внешней памяти

К ним относятся накопители на магнитных и оптических дисках, электронные устройства внешней памяти – флэш-память. Их функция – обеспечить чтение и запись информации на внешние носители. Если накопитель работает с дисками, то его называют дисководом. Например, дисковод жестких дисков, дисковод гибких дисков, дисковод компакт-дисков.

Встроенные в системном блоке магнитные диски вместе с дисководом жестких дисков называютсявинчестером. Это очень важная часть компьютера, поскольку именно здесь хранятся все необходимые для работы компьютера программы. Чтение и запись на жесткий диск производится  быстрее, чем на все другие виды внешних носителей, но все-таки медленнее, чем в оперативную память. На современных ПК устанавливают жесткие диски на сотни гигабайтов. Они представляют собой систему, состоящую из механического привода, головок чтения/записи, нескольких носителей и контроллера, обеспечивающего работу всего устройства и передачу данных. Магнитная головка (несколько магнитных головок в специальном позиционере) является одной из наиболее важных частей устройства. Конструкция магнитных головок постоянно совершенствуется. Носитель информации состоит из нескольких дисков, каждый из которых имеет две рабочих поверхности. При записи информации используются магнитные свойства слоя, нанесенного на поверхность. Диски закреплены на шпинделе двигателя. Скорость вращения дисков может быть 3600, 4500, 5400, 7200, 10000, 12000 об/мин. С увеличением скорости вращения дисков увеличивается производительность всей системы. Каждая поверхность любого из дисков разбивается на отдельные дорожки. Дорожки на одной вертикали на всех поверхностях образуют цилиндр. Дорожка разбивается на секторы. Доступ к необходимой информации осуществляется по номеру дорожки, номеру цилиндра, номеру сектора. Плотность записи на внешних секторах меньше, чем на внутренних секторах. Среди характеристик, определяющих производительность винчестера, можно выделить следующие: среднее время доступа, которое определяется временем позиционирования магнитных головок на дорожке и временем ожидания сектора, и скорость обмена данными, которая в основном зависит от используемого интерфейса.

Гибкие магнитные диски (дискеты) служат для хранения программ и данных небольшого объема и удобны для перенесения информации с одной ПЭВМ на другую.

На рабочей поверхности диска (дискеты) по концентрическим окружностям, размещенным на определенном расстоянии от центрального отверстия, записываются данные. Стандартный формат дискеты имеет 80 концентрических дорожек. Каждая дорожка разделена на 18 частей, называемые "секторами". Секторы представляют собой основную единицу хранения информации на дискете. При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объема запрашиваемой информации, которые называют кластерами.

Емкость таких дисков 1,44 Мбайт. Операции чтения/записи осуществляются контактным способом, когда магнитная головка для чтения/записи соприкасается с поверхностью диска, перемещаясь по радиусу. Во время работы диск вращается. В каждом фиксированном положении головка взаимодействует с круговой дорожкой. На эти дорожки и производится запись двоичной информации. На дорожки диска записывается двоичный код: намагниченный участок – единица, ненамагниченный – нуль. При чтении с диска эта запись превращается в нули и единицы в битах внутренней памяти.

УстройстваCD-ROM используют оптические диски емкостью до 700 Мбайт. Носитель представляет собой диск со светоотражающим слоем на одной стороне, на которой хранится информация. На диск нанесена спиралевидная дорожка от центра к краю диска, состоящая из отражающих и не отражающих свет точек. Считывание производится лазерным лучом. Сначала появились оптические диски, на которые информация записывается только один раз в заводских условиях. Диски CD-R с возможностью записи позволяют однократно записывать информацию на диски пользователем. Луч лазера прожигает пленку на поверхности диска, меняя его отражательную способность. Перезапись невозможна. Диски CD-RW позволяют делать многократную запись на диск. Здесь используется свойство рабочего слоя переходить под действием лазерного луча в кристаллическое или аморфное состояние, имеющие разную отражательную способность. Диск DVD (Digital Versatile Disc) - цифровой универсальный диск. Предназначен для хранения видео, аудио высокого качества, компьютерной информации большого объема. Односторонние однослойные DVD имеют емкость 4,7 Гбайт информации, двухслойные - 8,5 Гбайт; двухсторонние однослойные вмещают 9,4 Гбайт, двухслойные - 17 Гбайт.

Электронное устройствофлэш-память используется для чтения и записи информации в файловом формате. Это энергонезависимое устройство. Обладает гораздо большим информационным объемом (сотни и тысячи мегабайтов) по сравнению с дисками. Его устанавливают в USB – порт материнской платы.

Контроллеры

Для работы компьютера необходим обмен информацией между оперативной памятью и внешними устройствами. Такой обмен называется «вводом-выводом».

Для каждого внешнего устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером (от английского «controller» -«контролёр», «управляющий»). Существует контроллер дисковода, контроллер монитора, контроллер принтера и др.  Некоторые контроллеры могут управлять сразу несколькими устройствами.

Одним из контроллеров, которые присутствуют почти в каждом компьютере, является контроллер портов ввода-вывода. Эти порты бывают следующих типов:

параллельные (обозначаемые LPT1-LPT4), к ним обычно подключают принтеры;

последовательные (COM1-COM3), через которые обычно подсоединяют мышь, модем и др.;

usb – порт (цифровые устройства, электронное устройство -  флэш – память и др.)

Источник питания

Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Таймер

Это внутримашинные электронные часы. Таймер подключается к автономному источнику питания – аккумулятору и при отключении машины от сети продолжает работать.

2.3 Устройства ввода/вывода данных, их разновидности и основные характеристики

Устройства ввода информации

Клавиатура

Клавиатура является основным устройством ввода информации в персональный компьютер. В настоящее время существует большое количество видов клавиатур, отличающихся в основном эргономическими качествами. В клавиатуру встраиваются дополнительные устройства, такие как микрофон, акустическая система, тачпад и др. Клавиатура может оснащаться дополнительными клавишами, например Старт, для использования на компьютерах с операционной системой Windows. Несмотря на эти новшества, основное назначение клавиатуры - ввод символьной информации. Клавиатура содержит 101 и более клавиш (у мобильных компьютеров количество клавиш существенно меньше).

Мышь

Мышь - манипулятор, созданный для удобства ввода информации в компьютер. Мышь не заменяет клавиатуру. Мышь получила распространение на компьютеpax, на которых используются графические программные оболочки. Мышь имеет две или три кнопки. Двухкнопочная мыть может иметь специальное колесико (скроллинг) между клавишами для быстрого просмотра многостраничной информации. Такое же назначение имеет качающаяся средняя кнопка. Механические мыши используют шарик, передающий перемещение мыши на специальные датчики. Более точного позиционирования позволяет достичь оптическая мышь. Мышь может быть подключена к компьютеру через последовательный СОМ-порт, порт PS/2, порт USB. Последний вариант предпочтительней. Используются и беспроводные мыши, работающие в инфракрасном диапазоне или на радиочастотах.

Другие устройства ввода информации (манипуляторы)

Джойстик (joystick) - рычажный манипулятор для ввода координатной информации.

Трекбол (trackball) - перевернутая мышь с увеличенным шариком, который необходимо вращать пальцем.

Трекпойнт (trackpoint) - маленький джойстик, который размещается обычно в центре клавиатуры. Управляется нажатием пальца.

Тачпад (tonchpad) - площадка, чувствительная к нажатию пальца.

Сканер

Сканер - устройство ввода в компьютер информации с бумажного или другого немашинного носителя. Сканер используется для ввода текста, графических изображений. Отраженный от сканируемого изображения свет попадает на матрицу или линейку светочувствительных элементов на основе приборов с зарядовой связью (ПЗС), которые преобразуют аналоговый сигнал в цифровой. Виды сканеров: ручные, планшетные, рулонные, барабанные.

Ручные сканеры необходимо перемещать рукой, стараясь выдерживать определенную скорость и равномерность перемещения. Они имеют небольшую ширину захвата и невысокое разрешение.

В планшетных сканерах сканирующая головка перемещается относительно изображения с помощью шагового двигателя.

Рулонные сканеры протягивают сканируемые изображения через сканирующее устройство.

Барабанные сканеры в качестве светочувствительного элемента используют фотоэлектронный умножитель, что позволяет получать высококачественный результат.

Устройства вывода информации

Монитор

Типы мониторов:

CRT (Cathode Ray Tube)мониторы.В основе этих мониторов лежит электронно-лучевая трубка (ЭЛТ).

LCD мониторы (Liquid Crystal Display) - жидкокристаллические мониторы сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам.

PDF (Plasma Display Panels) - плазменные мониторы.Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном.

FED (FieldEmissionDisplay). Мониторы FED основаны на процессе, который немного похож на тот, что применяется в CRT-мониторах. При этом FED-мониторы очень тонкие.

Кратко остановимся на основныххарактеристиках монитора.

Под размером монитора обычно понимают размер диагонали монитора (в дюймах), при этом размер видимой пользователем области экрана обычно несколько меньше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой "Viewable size", но иногда указывается только один размер, размер диагонали трубки.

На величину максимально поддерживаемого монитором разрешения напрямую влияет частота горизонтальной развертки электронного луча, измеряемая в кГц (килогерцах). Значение горизонтальной развертки монитора показывает, какое предельное число горизонтальных строк может прочертить электронный луч на экране монитора за одну секунду. Соответственно, чем выше это значение, тем большее разрешение может поддерживать монитор при приемлемой частоте кадров.

С целью снижения риска для здоровья различными организациями были разработаны рекомендации по параметрам мониторов, которым должны следовать производители устройств. Все стандарты безопасности для мониторов регламентируют максимально допустимые значения электрических и магнитных полей, создаваемых монитором при работе. Практически в каждой развитой стране есть собственные стандарты, но особую популярность во всем мире завоевали стандарты, разработанные в Швеции и известные под именами ТСО и MPRII. ТСО (The Swedish Confederation of Professional Employees) - Шведская Конфедерация профессиональных коллективов рабочих. Стандарты ТСО разрабатываются с целью гарантировать пользователям компьютеров безопасную работу. Этим стандартам должен соответствовать каждый монитор, продаваемый в Швеции и в Европе. Рекомендации ТСО используются производителями мониторов для создания более качественных продуктов, которые менее опасны для здоровья пользователей.

В состав разработанных ТСО рекомендаций сегодня входят три стандарта: ТСО 92, ТСО 95 и ТСО 99. Цифры означают год их принятия.

Большинство измерений во время тестирований на соответствие стандартам ТСО проводятся на расстоянии 30 см спереди от экрана и на расстоянии 50 см вокруг монитора.

MPR II - это еще один стандарт, разработанный в Швеции. MPR II определяет максимально допустимые значения излучения магнитного и электрического полей, а также методы их измерения. Стандарты ТСО жестче, чем MPR II.

Видеоадаптер

Видеоадаптер представляет собой специальное устройство, сконструированное в виде отдельной платы расширения. Видеоадаптер управляет выводом информации на монитор. Характеристики видеосистемы зависят как от параметров используемого монитора, так и от установленного в компьютере видеоадаптера. Система «видеоадаптермонитор»называется видеотерминальным устройством.

Устройства вывода информации

Принтеры

Принтеры - устройства для вывода информации на твердый носитель (в настоящее время используются и прозрачные пленки). По технологии печати можно выделить принтеры: матричные, струйные, лазерные, LED и др.

Матричный принтер

Печатающим элементом является головка с 9, 18 или 24 иголками, удар которых через красящую ленту формирует выводимый символ на бумаге. Используется бумага формата А4 или A3. Возможно использование рулонной бумаги.

Струйный принтер

Струйные принтеры - это безударные устройства, работающие практически бесшумно. Печатающая головка разбрызгивает специальные чернила через сопла, Количество которых может достигать 256, на бумагу. Толщина струи меньше толщины иглы матричного принтера, поэтому качество печати выше. Печатающие головки могут быть совмещенными с чернильницей или нет. В первом случае заменяется весь блок. Во втором - лишь чернильница, хотя сама печатающая головка тоже является расходным материалом. Принтеры непрерывного действия, когда чернила непрерывно разбрызгиваются на бумагу при печати, а излишки возвращаются обратно в чернильницу, в настоящее время не имеют широкого распространения. Принтеры дискретного действия, когда чернила используются только по необходимости, используют либо специальную пузырьковую технологию, либо пьезоэффект. Принтеры с пузырьковой технологией в печатающей головке имеют небольшой нагревательный элемент, который под действием тока очень быстро нагревает чернила. Необходимая порция чернил выбрасывается из сопла. Одновременно с остыванием всасывается очередная чернильная капля. В принтерах второго типа используется принцип изменения размеров пьезокристалла под действием тока.

Лазерный принтер

В лазерных принтерах используется лазерный луч, который формирует изображение на специальном фотопроводящем барабане. Перед печатью поверхность барабана электрически заряжается. Луч лазера изменяет потенциал в зависимости от выводимого изображения. После формирования очередной строки барабан поворачивается на определенный шаг для формирования следующей строки. Этот шаг определяет физическую разрешающую способность принтера. Формирование печатаемой страницы на барабане принтера похоже на формирование изображение на экране монитора. После формирования страницы каждый участок барабана имеет свой потенциал, благодаря которому притягиваются заряженные частицы порошкообразного тонера. Барабан покрывается тонером, после чего тонер переносится на заряженный лист бумаги и закрепляется специальными резиновыми валиками за счет разогрева тонера до температуры расплава.

LED-принтер

В LED-принтерах (Light Emmiting Diode) вместо полупроводникового лазера используются мельчайшие светодиоды.

Термопринтеры

Печатающая головка термопринтера состоит из мельчайших нагревательных элементов, которые переносят специальное красящее вещество на бумагу именно в том месте, где обеспечивается необходимая температура. Различаются принтеры с переносом специальной красящей мастики и принтеры, в которых перенос вещества осуществляется в газообразном состоянии. Эти устройства имеют отличные показатели печати почти фотографического качества.

Основныехарактеристики принтера

VII.Программное обеспечение ЭВМ

7.1. Основные понятия. Программный продукт

Возможности компьютера как технической основы системы обработки данных связаны с используемым программным обеспечением (программами).

Программаупорядоченная последовательность команд (инструкций) компьютера для решения задачи.

Программное обеспечениесовокупность программ обработки данных и необходимых для их эксплуатации документов.

Программы предназначены для машинной реализации задач. Терминызадачаиприложениеимеют очень широкое употребление в контексте информатики и программного обеспечения (ПО).

Задачапроблема, подлежащая решению.

Приложениепрограммная реализация на компьютере решения задачи.

Существует большое число разнообразных классификаций задач. С позиций специфики разработки и вида программного обеспечения будем различать два класса задач — технологические и функциональные.

Технологические задачиставятся и решаются при организации технологического процесса обработки информации на компьютере. Технологические задачи являются основой для разработкисервисных средствпрограммного обеспеченияв виде утилит, сервисных программ, библиотек процедури др., применяемых для обеспечения работоспособности компьютера, разработки других программ или обработки данных функциональных задач.

Функциональные задачитребуют решения при реализации функций управления в рамках информационных систем предметных областей. Например, управление деятельностью торгового предприятия, планирование выпуска продукции, управление перевозкой грузов и т.п. Функциональные задачи в совокупности образуют предметную область и полностью определяют ее специфику.

Предметная (прикладная) областьсовокупность связанных между собой функций, задач управления, с помощью которых достигается выполнение поставленных целей.

Все программы по характеру использования и категориям пользователей можно разделить на два класса — утилитарные программы и программные продукты (изделия).

Утилитарные программы("программы для себя") предназначены для удовлетворения нужд их разработчиков. Чаще всего утилитарные программы выполняют роль сервиса в технологии обработки данных либо являются программами решения функциональных задач, не предназначенных для широкого распространения.

Программные продукты(изделия) предназначены для удовлетворения потребностей пользователей, широкого распространения и продажи.

Программный продукт— комплекс взаимосвязанных программ для решения определенной проблемы (задачи) массового спроса, подготовленный к реализации как любой вид промышленной продукции.

Как правило, программные продукты требуют сопровождения, которое осуществляется специализированными фирмами — распространителями программ (дистрибьюторами), реже — фирмами-разработчиками. Сопровождение программ массового применения сопряжено с большими трудозатратами — исправление обнаруженных ошибок, создание новых версий программ и т.п.

Сопровождение программного продукта— поддержка работоспособности программного продукта, переход на его новые версии, внесение изменений, исправление обнаруженных ошибок и т.п.

7.2. Общая классификация программного обеспечения ЭВМ

Программные продукты можно классифицировать по различным признакам. Рассмотрим классификацию, в которой основополагающим признаком являетсясфера (область) использования программных продуктов:

Для поддержки информационной технологии в этих областях выделим соответственно три класса программных продуктов:

Системное программное обеспечениенаправлено:

Данный класс программных продуктов тесно связан с типом компьютера и является его неотъемлемой частью. Программные продукты в основном ориентированы на квалифицированных пользователей — профессионалов в компьютерной области: системного программиста, администратора сети, прикладного программиста, оператора.

Программные продукты данного класса носят общий характер применения, независимо от специфики предметной области.

Системное программное обеспечение— совокупность программ и программных комплексов для обеспечения работы компьютера и сетей ЭВМ.

Прикладное программное обеспечение служит программным инструментарием решения функциональных задач и являются самым многочисленным классом программных продуктов. В данный класс входят программные продукты, выполняющие обработку информации различных предметных областей.

Данный класс программных продуктов может быть весьма специфичным для отдельных предметных областей.

Инструментарий технологии программированияобеспечивает процесс разработки программ и включает специализированные программные продукты, которые являются инструментальными средствами разработчика. Программные продукты данного класса поддерживают все технологические этапы процесса проектирования, программирования (кодирования), отладки и тестирования создаваемых программ.

Инструментарий технологии программирования —совокупность программ и программных комплексов, обеспечивающих технологию разработки, отладки и внедрения создаваемых программных продуктов.

7.3. Системное программное обеспечение

Системное программное обеспечение состоит из базового программного обеспечения, которое, как правило, поставляется вместе с компьютером, и сервисного программного обеспечения, которое может быть приобретено дополнительно.

Базовое программное обеспечениеминимальный набор программных средств, обеспечивающих работу компьютера.

Сервисное программное обеспечение— программы и программные комплексы, которые расширяют возможности базового программного обеспечения и организуют более удобную среду работы пользователя.

Базовое системное программное обеспечение

В базовое программное обеспечение входят:

Операционная системапредназначена для управления выполнением пользовательских программ, планирования и управления вычислительными ресурсами ЭВМ.

В секторе программного обеспечения и операционных систем ведущее положение занимают системы семействаMS Windows. Рассмотрим наиболее распространенные типы операционных систем.

Операционные системы для персональных компьютеров делятся на:

Сетевые операционные системыкомплекс программ, обеспечивающий обработку, передачу и хранение данных в сети. Сетевая ОС предоставляет пользователям различные виды сетевых служб (управление файлами, электронная почта, процессы управления сетью и др.), поддерживает работу в абонентских системах.

Операционные оболочкиспециальные программы, предназначенные для облегчения общения пользователя с командами операционной системы. Операционные оболочки имеют текстовый и графический варианты интерфейса конечного пользователя.

Наиболее популярны следующие виды текстовых оболочек операционной системы:Total Commander,Windows Commander и др.

Операционная система

Рассмотрим подробнее операционную систему.

Операционная система — совокупность программных средств, обеспечивающая управление аппаратной частью компьютера и прикладными программами, а также их взаимодействие между собой и пользователем.

Операционная система выполняет следующие функции:

Обычно операционная система хранится на жестком диске, а при его отсутствии выделяется специальный диск, который называется системным. При включении компьютера операционная система автоматически загружается с диска в оперативную память и занимает в ней определенное место. Операционная система создается не для отдельной модели компьютера, а для серии компьютеров, в структуре которых заложена и развивается во всех последующих моделях определенная концепция.

В основе любой операционной системы лежит принцип организации работы внешнего устройства хранения информации. Несмотря на то, что внешняя память может быть технически реализована на разных материальных носителях, их объединяет принятый в операционной системе принцип организации хранения логически связанных наборов информации в виде так называемых файлов.

Файл — логически связанная совокупность данных или программ, для размещения которой во внешней памяти выделяется именованная область.

Файл служит учетной единицей информации в операционной системе. Любые действия с информацией осуществляются над файлами.

В файлах могут храниться разнообразные виды и формы представления информации: тексты, рисунки, чертежи, числа, программы, таблицы и т.п. Особенности конкретных файлов определяются их форматом. Под форматом понимается элемент языка, в символическом виде описывающий представление информации в файле.

Для характеристики файла используются следующие параметры:

Сервисное системное программное обеспечение

Расширением базового программного обеспечения компьютера является наборсервисныхпрограмм (утилит), которые можно классифицировать по функциональному признаку следующим образом:

Рассмотрим более подробно архиваторы и антивирусные программы.

Архиваторы

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информацииархиваторы.

Сжатие информации — это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл — это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Архивация (упаковка) — помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде.

Разархивация (распаковка) — процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память.

Антивирусные программы

Компьютерным вирусом называется специально написанная программа, способная самопроизвольно присоединяться к другим программам, создавать свои копии и внедрять их в файлы, системные области компьютера и в вычислительные сети с целью нарушения работы программ, порчи файлов и каталогов, создания всевозможных помех в работе на компьютере.

Несмотря на принятые во многих странах законы о борьбе с компьютерными преступлениями и разработку специальных программных средств защиты от вирусов, количество новых вирусов постоянно растет. Это требует от пользователя персонального компьютера знаний о природе вирусов, способах заражения вирусами и защиты от них.

Основными путями проникновения вирусов в компьютер являются съемные носители, а также компьютерные сети.

Для обнаружения, удаления и защиты от компьютерных вирусов разработано несколько видов специальных программ, которые позволяют обнаруживать и уничтожать вирусы. Такие программы называютсяантивирусными.

Различают следующие виды антивирусных программ:

Программы-детекторы осуществляют поиск характерной для конкретного вируса последовательности байтов (сигнатуры вируса) в оперативной памяти и в файлах и при обнаружении выдают соответствующее сообщение. Недостатком таких антивирусных программ является то, что они могут находить только те вирусы, которые известны разработчикам таких программ.

Программы-доктора илифаги, а также программы-вакцины не только находят зараженные вирусами файлы, но и "лечат" их, т.е. удаляют из файла тело программы вируса, возвращая файлы в исходное состояние. В начале своей работы фаги ищут вирусы в оперативной памяти, уничтожая их, и только затем переходят к "лечению" файлов. Учитывая, что постоянно появляются новые вирусы, программы-детекторы и программы-доктора быстро устаревают, и требуется регулярное обновление их версий.

Программы-ревизоры относятся к самым надежным средствам защиты от вирусов. Ревизоры запоминают исходное состояние программ, каталогов и системных областей диска тогда, когда компьютер не заражен вирусом, а затем периодически или по желанию пользователя сравнивают текущее состояние с исходным. Обнаруженные изменения выводятся на экран видеомонитора. Как правило, сравнение состояний производят сразу после загрузки операционной системы. При сравнении проверяются длина файла, код циклического контроля (контрольная сумма файла), дата и время модификации, другие параметры.

Программы-фильтры или "сторожа" представляют собой небольшие резидентные программы, предназначенные для обнаружения подозрительных действий при работе компьютера, характерных для вирусов. При попытке какой-либо программы произвести такие действия "сторож" посылает пользователю сообщение и предлагает запретить или разрешить соответствующее действие. Программы-фильтры весьма полезны, так как способны обнаружить вирус на самой ранней стадии его существования до размножения. Однако они не "лечат" файлы и диски. Для уничтожения вирусов требуется применить другие программы, например фаги. К недостаткам программ-сторожей можно отнести их "назойливость" (например, они постоянно выдают предупреждение о любой попытке копирования исполняемого файла), а также возможные конфликты с другим программным обеспечением.

Вакцины илииммунизаторы — это резидентные программы, предотвращающие заражение файлов. Вакцины применяют, если отсутствуют программы-доктора, "лечащие" этот вирус. Вакцинация возможна только от известных вирусов. Вакцина модифицирует программу или диск таким образом, чтобы это не отражалось на их работе, а вирус будет воспринимать их зараженными и поэтому не внедрится. В настоящее время программы-вакцины имеют ограниченное применение.

7.4. Инструментарий технологии программирования

Инструментарий технологии программирования — программные продукты поддержки (обеспечения) технологии программирования.

В рамках этих направлений сформировались следующие группы программных продуктов:

Средства для создания приложений

Средства для создания приложений — совокупность языков и систем программирования, а также различные программные комплексы для отладки и поддержки создаваемых программ.

Про языки программирования более подробно изложено ранее.

В самом общем случае для создания программы на выбранном языке программирования нужно иметь следующие компоненты, образующиесреду программирования.

  1. Текстовый редактор.Так как текст программы записывается с помощью ключевых слов, обычно происходящих от слов английского языка, и набора стандартных символов для записи всевозможных операций, то формировать этот текст можно в любом редакторе, получая в итоге текстовый файл сисходным текстомпрограммы. Обычно используют специализированные редакторы, которые ориентированы на конкретный язык программирования и позволяют в процессе ввода текста выделять ключевые слова и идентификаторы разными цветами и шрифтами. Подобные редакторы созданы для всех популярных языков и дополнительно могут автоматически проверять правильность синтаксиса программы непосредственно во время ее ввода.
  2. Транслятор (компилятор или интерпретатор). Исходный текст с помощьюпрограммы-компиляторапереводится в машинный код. Если обнаружены синтаксические ошибки, то результирующий код создан не будет.

3.Библиотеки. Исходный текст большой программы состоит, как правило, из несколькихмодулей(файлов с исходными текстами), потому что хранить все тексты в одном файле неудобно — в них сложно ориентироваться. Модули компилируется в отдельный файл с объектным кодом, которые затем надо объединить в одно целое. Кроме того, к ним надо добавить машинный код подпрограмм, реализующих различные стандартные функции (например, вычисляющих математические функцииsinилиln).Такие функции содержатся вбиблиотеках(файлах со стандартным расширением .LIB), которые поставляются вместе с компилятором.

4. Редактор связей. Объектный код обрабатывается специальной программой— редактором связейилисборщиком,который выполняет связывание объектных модулей и машинного кода стандартных функций, находя их в библиотеках, и формирует на выходе работоспособное приложение —исполнимый коддля конкретной платформы. Если по каким-то причинам один из объектных модулей или нужная библиотека не обнаружены (например, неправильно указан каталог с библиотекой), то сборщик сообщает об ошибке и готовой программы не получается.

5. В современных интегрированных системах имеется еще один компонент —отладчик, который позволяет анализировать работу программы во время ее выполнения. С его помощью можно последовательно выполнять отдельные операторы исходного текста по шагам, наблюдая при этом, как меняются значения различных переменных. Без отладчика разработать крупное приложение очень сложно.

И др.

CASE-технологии

CASE-технология — программный комплекс, автоматизирующий весь технологический процесс анализа, проектирования, разработки и сопровождения сложных программных систем.

НекоторыеCASE-технологии ориентированы только на системных проектировщиков и предоставляют специальные графические средства для изображения различного вида моделей.

Другой классCASE-технологий поддерживает только разработку программ.

В рамкахCASE-технологий проект сопровождается целиком, а не только его программные коды. Проектные материалы, подготовленные вCASE-технологии, служат заданием программистам, а само программирование скорее сводится к кодированию — переводу на определенный язык структур данных и методов их обработки, если не предусмотрена автоматическая кодогенерация.

БольшинствоCASE-технологий использует также метод "прототипов" для быстрого создания программ на ранних этапах разработки. Кодогенерация программ осуществляется автоматически — до 85 - 90% объектных кодов и текстов на языках высокого уровня.

7.5. Прикладное программное обеспечение

Данный класс программных средств наиболее представителен, что обусловлено, прежде всего, широким применением средств компьютерной техники во всех сферах деятельности человека, созданием автоматизированных информационных систем различных предметных областей.

Классификации прикладного программного обеспечения (пакетов прикладных программ, ППП) существуют различные. Рассмотрим следующую:

ППП общего назначения

Данный класс содержит широкий перечень программных продуктов, поддерживающих преимущественно информационные технологии конечных пользователей. Кроме конечных пользователей этими программными продуктами за счет встроенных средств технологии программирования могут пользоваться и программисты для создания усложненных программ обработки данных.

Представители данного класса программных продуктов:

1. Текстовые процессоры — автоматическое форматирование документов, вставка рисованных объектов и графики, составление оглавлений и указателей, проверка орфографии, шрифтовое оформление, подготовка шаблонов документов. Развитием данного направления программных продуктов являются издательские системы.

2. Табличные процессоры — удобная среда для вычислений силами конечного пользователя; средства деловой графики, специализированная обработка (встроенные функции, работа с базами данных, статистическая обработка данных и др.).

3. Системы управления базами данных (СУБД), обеспечивающие организацию и хранение локальных баз данных на автономно работающих компьютерах либо централизованное хранение баз данных на файл-сервере и сетевой доступ к ним.

4. Графические редакторы. Это обширный класс программ, предназначенных для создания и обработки графических изображений. В данном классе различают следующие категории: растровые редакторы, векторные редакторы и программные средства для создания и обработки трехмерной графики (ЗD-редакторы).

Растровые редакторы применяют, когда графический объект представлен в виде комбинации точек, образующих растр и обладающих свойствами яркости и цвета. Такой подход эффективен, если графическое изображение имеет много полутонов и информация о цвете элементов, составляющих объект, важнее, чем информация об их форме. Это характерно для фотографических и полиграфических изображений. При подготовке печатных изданий растровые редакторы применяют для обработки изображений, их ретуши, создания фотоэффектов и художественных композиций (коллажей).

Векторные редакторы отличаются от растровых способом представления данных об изображении. Элементарным объектом векторного изображения является не точка, а линия. Такой подход характерен для чертежно-графических работ, в которых форма линий имеет большее значение, чем информация о цвете отдельных точек, составляющих ее. В векторных редакторах каждая линия рассматривается как математическая кривая и, соответственно, представляется не комбинацией точек, а математической формулой (в компьютере хранятся не координаты точек линии, а числовые коэффициенты формулы, которая эту линию описывает). Такое представление намного компактнее, чем растровое, соответственно данные занимают много меньше места, однако построение любого объекта выполняется не простым отображением точек на экране, а сопровождается непрерывным пересчетом параметров кривой в координаты экранного или печатного изображения. Векторные редакторы удобны для создания изображений, но не используются для обработки готовых рисунков. Они нашли широкое применение в рекламном бизнесе, их применяют всюду, где стиль художественной работы близок к чертежному.

Редакторы трехмерной графики используют для создания трехмерных композиций. Они имеют две характерные особенности. Во-первых, они позволяют гибко управлять взаимодействием свойств поверхности изображаемых объектов со свойствами источников освещения и, во-вторых, позволяют создавать трехмерную анимацию.

5. Средства презентационной графики — специализированные программы, предназначенные для создания изображений и их показа на экране, подготовки слайд-фильмов, их редактирования, определения порядка следования изображений.

Презентация может включать показ диаграмм и графиков, все программы презентационной графики условно делятся на программы для подготовки слайд-шоу, программы для подготовки мультимедиа-презентации.

6.Интегрированные пакеты — набор нескольких программных продуктов, функционально дополняющих друг друга, поддерживающих единые информационные технологии, реализованные на общей вычислительной и операционной платформе.

Наиболее распространены интегрированные пакеты, компонентами которых являются: СУБД; текстовый редактор; табличный процессор; органайзер; средства поддержки электронной почты; программы создания презентаций; графический редактор.

Компоненты интегрированных пакетов могут работать изолированно друг от друга, но основные достоинства интегрированных пакетов проявляются при их разумном сочетании друг с другом. Пользователи интегрированных пакетов имеют унифицированный для различных компонентов интерфейс, тем самым обеспечивается относительная легкость процесса их освоения.

Для подобного класса программ высоки требования к оперативности обработки данных (например, пропускная способность для банковских систем), велики объемы хранимой информации, что обусловливает повышенные требования к средствам администрирования данных БД (актуализации, копирования, обеспечения производительности обработки данных).

Наиболее важно для данного класса программных продуктов создание дружественного интерфейса для конечных пользователей.

VIII. Компьютерные сети

8.1. Введение в компьютерные сети




Похожие работы, которые могут быть Вам интерестны.

1. Применение методов машинного обучения и анализа данных для решения проблем автоматизации сбора и обработки информации

2. Разработка программы сбора информации на языке Python

3. Построение канала передачи информации

4. АВТОМАТИЗАЦИЯ ОБУЧЕНИЯ ТЕХНОЛОГИИMSF: РАЗРАБОТКА ВИРТУАЛЬНОГО СОБЕСЕДНИКА ДЛЯ СБОРА ИНФОРМАЦИИ ДЛЯ РАЗВЕРТЫВАНИЯ ПРОГРАММНЫХ ПРОДУКТОВ

5. Технологии обработки информации

6. Совершенствование учебного процесса по кафедре Системы передачи информации

7. Технология настройки файл–сервера для безопасной передачи информации на предприятии

8. Информационная система для автоматизированной передачи информации по существующей локальной сети Ethernet СПД РЖД

9. Пути и методызащиты информации в системах обработки данных

10. Проектирование и расчёт многоканального устройства передачи информации шумоподобными сигналами по акустическому каналу связи