Физические представления античности и Средних веков. Развитие физики в Новое время



Содержание

Введение

Физика на протяжении всей новой и новейшей истории была лидером научного прогресса. Ее концепции и методы служили образцами для других наук, то есть она была как бы парадигмой естественнонаучного познания в целом. И лишь во второй половине XX века развитие других направлений привело к тому, что физика стала терять свое абсолютное лидерство. Но и сегодня во многих отношениях научно-технический прогресс базируется на основных физических концепциях и тех разработках частных вопросов, которые с этими основными концепциями связаны.

Обобщающие физические теории вполне законно стремятся раскрыть наиболее глубокую основу ещё более широкого круга явлений, но мысль физиков не удовлетворяется эти и так сказать по инерции устремляется к конкретно – физическому объяснению устройства всего мира в целом. И не раз казалось, что эта цель уже достигнута – то в виде классической механики, потом в виде термодинамики, теперь в виде обобщающих теорий полей и элементарных частиц. Но время и новые открытия неумолимо заставляют признать несбыточность подобных надежд. Применительно ко всему миру в целом приходится обходится лишь философскими размышлениями и обобщениями, лишь общей теорией диалектики, лишь качественными оценками, а не количественными расчётами.

1.Физические представления античности и Средних веков

Термин «физика» появляется в античной философской и научной мысли в VI-V веках до нашей эры. Физиками тогда, называли тех мыслителей, которые пытались дать более или менее целостную картину мира, окружающего человека. При этом они мало внимания обращали на то, каким образом, при помощи каких методов и познавательных процедур возникает это знание. К тому же разрабатываемую ими картину мира они считали абсолютной истиной, которая не нуждается ни в каком дальнейшем уточнении. И все же они выдвинули, почти не обращаясь к реальному опыту, ряд принципиальных идей, которые впоследствии получили развитие в физике Нового времени и даже стали основой ее дальнейшего прогресса.

Наиболее фундаментальной идеей в этом отношении был принцип атомизма, который позволил Демокриту и Эпикуру качественно объяснить возникновение многообразия в окружающем мире и показать, что для этого достаточно сравнительно простых моделей. Так, различие двух любых вещей полностью объясняется всего тремя свойствами: числом атомов, из которых они состоят; формой этих атомов, которая адекватно описывается геометрией; отношениями между атомами.

Всякое изменение вещи, как количественное, так и качественное, зависит от изменения этих трех характеристик и от их соотношения. Такое понимание физической реальности привело к представлению о бесконечности мира и одновременно к утверждению, что основа физической реальности, то есть атомы, абсолютно неизменны, следовательно, они существуют вне времени. Тем самым формулировался принцип несотворимости и неуничтожимости вещества и материи. Правда, для атомистов материя существовала в двух формах: как атомы, или полное, и как пустота.

Таким образом, абстрактное противоречие движущейся материи, сформулированное еще Гераклитом как единство бытия и небытия, приобрело конкретную физическую форму как отношение полного и пустого. Полное - это бытие, пустое - небытие. Противоположности оказались при этом абсолютно разделенными, что надолго предопределило развитие физических парадигм. Здесь же была поставлена еще одна проблема, а именно проблема элементарности, то есть атомы абсолютно элементарны. Ведь они никаким способом не обнаруживают своей внутренней структуры, они абсолютно неделимы.

Эта модель физической реальности использовала и такие парадигмы, которые продолжали играть важную роль на протяжении всей последующей истории физики, их коренной пересмотр произошел в сущности только в XX веке, так как только с развитием квантовой механики и исследованиями элементарных частиц были в принципе пересмотрены понятия вакуума и элементарности.

Хотя античные мыслители разрабатывали различные аспекты понимания физических явлений, они не затрагивали самой сути физической реальности. Решающее значение для дальнейшего развития физики, да и всего естествознания имели три концепции. Это атомизм Демокрита и Эпикура, концепция возникновения порядка из хаоса Эмпедокла и Анаксагора и физика Аристотеля, в которой он попытался дать описание движения исходя из принципов своей философии. Аристотель вслед за Платоном полагал, что логически может быть выражено лишь то, что не имеет в себе противоречия. Но изменение, движение противоречивы, поэтому познание направлено на то, что является причиной движения, изменения. Такой причиной, по Аристотелю, является форма, то есть система общих свойств. Форма одновременно и причина движения, изменения, и цель процесса. Поскольку форма неизменна, то следует вывод, согласно которому движение происходит лишь постольку, поскольку действует его причина. Устранение причины устраняет и само движения. Это утверждение Аристотеля стало господствующим в средневековой физике, которая разрабатывалась в европейских университетах и в сущности оставалась в рамках философии. И хотя делались попытки пересмотреть эту аристотелевскую парадигму, она продолжала господствовать в физических представлениях вплоть до XVII века.

Галилей нанес первый серьезный удар по этой физической парадигме. Введение принципа инерции показало, что если тело движется прямолинейно и равномерно, то оно будет сохранять это состояние и тогда, когда на него не будет действовать никакая сила. Таким образом, по отношению к механическому движению был сформулирован принцип тождества противоположностей. Оказалось, что состояние равномерного и прямолинейного движения и состояние покоя настолько тождественны, что, находясь внутри системы, никаким механическим экспериментом нельзя обнаружить, движется она или покоится.

Именно эти парадигмы и определили первый этап развития физики Нового времени.

2.Развитие физики в Новое время

Последующее развитие физики, в частности, осуществленное Ньютоном, было лишь развитием фундаментального открытия Галилея. Однако при этом были введены в физику некоторые парадигмальные идеи. Во-первых. Ньютон в сущности понимает атомизм или корпускулярную концепцию материи возможно под влиянием работ Бойля, но распространяет это на теорию света, рассматривая свет как поток корпускул. В то же время, явно или неявно, Ньютон допускает две весьма существенные идеализации. Во-вторых, мгновенность действия и дальнодействие, по крайней мере для сил гравитации. Тем самым вводится предположение о существовании вневременного процесса. Ведь как мгновенность действия, так и дальнодействие исключают временную характеристику взаимодействия. В-третьих, Ньютон предположил, что пространство и время - это самостоятельные и независимые от материи сущности. Все физические процессы разворачиваются во времени и пространстве, но не взаимодействуют с ними.

Используя эти представления о физической реальности, Ньютон построил первую космологическую модель. Согласно этой модели в бесконечном пространстве относительно равномерно распределены звезды, их также бесконечно много. Если бы пространство было конечно или число звезд было конечным, то силы гравитации стянули бы все звезды в единое тело. Устойчивость космоса основана, таким образом, на бесконечности пространства, бесконечном числе звезд и относительной равномерности распределения этих звезд в пространстве.

Успехи механики в ХVII-ХVIII веках привели как самих физиков, так и философов-материалистов к методологической установке парадигмального характера: познать что-либо - это значит построить механическую модель изучаемой области и таким образом свести ее к законам механики. Эти законы являются наиболее фундаментальными, и любой другой закон - это лишь конкретизация законов механики. Эта установка настолько прочно вошла в сознание физиков, что даже Максвелл, создатель теории электромагнитного поля, вначале пытался объяснить его, используя механические модели. Даже в 1900 году общепризнанный авторитет в физике того времени Томпсон, он же лорд Кельвин, утверждал, что принципиально новых открытий в физике ожидать нельзя, все такие открытия уже сделаны, - это законы механики. Новая парадигмальная структура в физике начинает формироваться в связи с изучением электромагнитных явлений. Вначале, естественно, делаются попытки рассмотреть эти явления в той же системе парадигм, к которой физиков приучила механика. Вместо тяготеющих масс теперь рассматриваются электрические заряды, которые притягиваются или отталкиваются по закону, аналогичному закону тяготения. Однако вскоре выяснилось, что с электромагнитными явлениями связаны такие закономерности, с которыми классическая механика не имела дела. Поэтому пришлось пересмотреть саму субстанцию физических явлений. Изучение света показало, что корпускулярная модель, которую использовал сам Ньютон, недостаточна. Более адекватной оказалась волновая модель. Но для распространения волн нужна среда, и в качестве такой среды был постулирован эфир. Таким образом, атомы и эфир - это две субстанции, которые должны были позволить свести все физические явления к законам механики. Однако уже Максвелл в своих последних работах отказывается от механических моделей и выводит уравнения теории электромагнитного поля. Исследования этой теории показали, что она вовсе не нуждается в механике, что относится к своему собственному эмпирическому материалу так же, как классическая механики к своему. Это две независимые теории, описывающие качественно различные процессы.

Однако парадигма, господствовавшая еще в физике, требовала редукции одних законов к другим. Поэтому вместо механической картины мира возникают попытки построить электромагнитную картину мира, включающую объяснение механических явлений. Таким образом, создание теории электромагнитного поля стало завершением того процесса, который существенно изменил парадигмальную структуру физического мышления. Электромагнитные процессы разворачиваются в любой среде, в том числе в вакууме, и поэтому вакуум, в котором реализуются эти процессы, уже не является абсолютной пустотой.

Поскольку благодаря электромагнитным моделям было выявлено единство таких, казалось бы, разнородных процессов, как электричество, магнетизм, свет, то естественно было ожидать, что в основе всех этих процессов лежит одна и та же субстанция, то есть эфир. Между тем сопоставление опытов Физо и Майкельсона - Морли показало, что понятие эфира противоречиво. Он должен одновременно захватываться движением Земли и не захватываться. Но противоречивое понятие не может быть основой теоретических моделей. Открытие фотоэффекта показало, что свет, то есть электромагнитное колебание, одновременно обладает как волновой, так и корпускулярной природой. Таким образом, эфир оказался не нужным, поскольку он не в состоянии объяснить двойственную природу электромагнитных процессов.

Переход от механических моделей физических процессов к электромагнитным принципиально меняет одну из фундаментальных парадигм, которая берет начало от античного атомизма. Для всей физики от античности, до второй половины девятнадцатого века господствовала парадигма, согласно которой носителем свойств, субъектом физической реальности являются частицы, корпускулы и т.д. Теперь же оказалось, что таким носителем и соответственно субъектом является поле. Но поле в отличие от корпускул, непрерывно. Согласно математическому определению поле, в отличие от вещества, - это система, обладающая бесконечным числом степеней свободы.

3.Переход от классических к релятивистским представлениям в физике

Своё развитие концепция поля получила в теории относительности. В работах Пуанкаре и Эйнштейна были заложены основы нового понимания физической реальности. Согласно Пуанкаре, если мы сталкиваемся с ситуацией, в которой известные нам физические законы уже не могут объяснить эмпирические факты, существует две возможности решения проблемы: можно изменить, во-первых, сами законы, а во-вторых, - пространство и время. При этом мы получим тождественные по результатам решения проблемы. Однако легче произвести преобразования свойств пространства и времени. Лоренц показал, как это можно сделать математически, а Минковский построил для этой цели такое математическое представление пространства-времени, которое выявило их неразрывную связь.

В основе этих математических построений лежало обобщение идеи, которая берет начало от принципа относительности Галилея. Как уже говорилось, согласно этому принципу, находясь внутри системы, невозможно посредством механического эксперимента выяснить, движется эта система или покоится, при условии, что система инерциальна, то есть находится в состоянии покоя или равномерного и прямолинейного движения.

Этот принцип отождествляет движение и покой лишь с точки зрения механического движения. Но к началу XX века физика уже имела дело с качественно разнообразными процессами. Отсюда естественное обобщение принципа Галилея: находясь внутри инерциальной системы, никаким физическим экспериментом нельзя обнаружить, движется она или покоится. Следовательно, тождество покоя и движения обобщается по отношению к любому физическому процессу. Но для того чтобы построить специальную теорию относительности, нужен второй постулат, и в качестве такого постулата был использован результат эксперимента Майкельсона - Морли, согласно которому скорость света в вакууме не зависит от скорости источника света. Для вакуума эта величина постоянная и вообще является пределом скорости для всех физических взаимодействий. Применяя математический аппарат Лоренца и Минковского и введя ряд эпистемологических допущений, основанных на мысленном эксперименте, можно показать. Во-первых, не существует универсального способа выявления одновременности событий, поскольку для этого необходимо обмениваться сигналами, а скорость прохождения сигнала конечна. Следовательно, два наблюдателя, движущиеся относительно друг друга, получат разные результаты при попытке установить одновременность одного и того же события. Во-вторых, при раздельном измерении пространственного и временного интервала мы, в зависимости от системы отсчета, будем получать разные значения. Абсолютной величиной, не зависящей от наблюдателя, обладает лишь пространственно-временной интервал.

Несмотря на всю революционность этой концепции пространства и времени как основы понимания всех физических процессов, ее нередко относят к классической физике. Дело в том, что теория относительности сохранила то понимание детерминизма, которое было парадигмальным для классической физики, в то время как с созданием квантовой механики был пересмотрен лапласовский детерминизм. Ему на смену пришло представление о вероятностной детерминации и неопределенности как неотъемлемой характеристики всякого физического взаимодействия.

В специальной теории относительности тождество покоя и движения было представлено в обобщенной форме, поскольку речь в ней идет не только о механических взаимодействиях, но о любых физических экспериментах и, следовательно, о том, что любые физические законы инвариантны, в инерциальных системах. Но даже и такое обобщение является неполным. Ведь речь идет лишь об инерциальных системах.

Следующий шаг, обобщающий принцип тождества покоя и движения в физических процессах, должен был состоять в том, чтобы распространить его и на ускоренное движение. Это было сделано в общей теории относительности. В ней утверждалось, что никаким физическим экспериментом, находясь внутри системы, нельзя выяснить, покоится система или движется, независимо от того, каким является это движение. Иными словами, был введен принцип тождества гравитационной и инерциальной массы.

Такая постановка проблемы движения и физического взаимодействия вообще привела к изменению понимания пространства и времени. Гравитацию можно было представить как кривизну пространства, зависящую от распределения в нем тяготеющих масс. Вполне естественным казался вывод, доказанный Эйнштейном и Инфельдом, согласно которому общая теория относительности является третьим и последним этапом в развитии теории движения. Ведь принцип тождества покоя и движения получил в ней предельное обобщение.

Создание обшей теории относительности позволило по-новому поставить проблему создания космологических моделей. Хотя вплоть до XX века астрономы исходили из ньютоновской модели Вселенной, однако уже в XIX веке выяснилось, что эта модель содержит в себе противоречие наблюдаемым фактам. Яснее всего это выразилось в так называемом фотометрическом и гравитационном парадоксах. Как показал Ольберс, если пространство бесконечно и равномерно заполнено звездами, то их свет должен суммироваться и, следовательно, ночное небо должно светиться с яркостью Солнца, поскольку Солнце по своей светимости средняя звезда. Однако этого не наблюдается. Следовательно, что-то в предположениях, на которых построена эта модель, неверно. Позднее Зейлегер доказал так называемый гравитационный парадокс. Согласно этому парадоксу, если в пространстве бесконечно много тел, то силы тяготения суммируются и ускорение в любой точке пространства под действием этих сил будет бесконечно большим.

Единственный способ избавиться от этих парадоксов при сохранении мира в пространстве состоит в том, чтобы принять определенные соотношения между звездами и звездными системами. Если эти расстояния выстраиваются в ряд Даламбера, который сходится, то парадоксы исчезают, но при этом количество вещества в пространстве стремится к нулю. Поскольку ньютоновская модель была построена на основе классической механики, то с созданием релятивистской механики, то есть механики теории относительности, появилась возможность построить принципиально новую космологическую модель. Предположив определенную плотность вещества во Вселенной, несколько большую величины грамм на десять в минус двадцать девятой степени на кубический сантиметр, Эйнштейн получил космологическую модель Вселенной в виде четырехмерного множества событий в форме цилиндра с конечным радиусом и бесконечной временной осью. При этом он рассмотрел лишь то решение уравнений, которое описывало стационарную модель.

Как показал впоследствии Фридман, эти уравнения имеют и нестационарное решение. При этом пространство будет либо сжиматься, либо расширяться. При положительной кривизне, когда плотность массы выше критической, кривизна положительна и «Вселенная» сжимается, при плотности меньшей критической кривизна отрицательна и «Вселенная» расширяется. Когда в 1929 году Хаббл обнаружил красное смещение в спектрах удаленных Галактик, он истолковал его по принципу Доплера, согласно которому при удалении источника колебаний идущая от него частота колебаний уменьшается, что для света и означает сдвиг в красную сторону спектра. Это было воспринято как подтверждение вывода Фридмана о нестационарности Вселенной, а точнее о том, что Вселенная расширяется.

Теория относительности произвела революцию прежде всего в понимании мегамира и лишь позднее выяснилось, что на уровне микромира также действуют законы, сформулированные в ней.

4.Современная физика макро- и микромира

Началом следующего коренного изменения физических представлений было открытие радиоактивности и фотоэффекта. Эти открытия привели уже в начале века к таким исследованиям в микромире, которые получили обобщение в квантовой механике, в релятивистской квантовой механике, в теории элементарных частиц.

Наиболее фундаментальным результатом, который изменил одну из основных парадигм физики, был вывод о том, что все фундаментальные физические законы имеют статистический характер. Решающее значение при этом имело открытие принципа неопределенности Гейзенберга. Согласно этому принципу дельта X, умноженная на дельта P, больше, равно H.

При уменьшении одной из этих погрешностей вторая растет и, таким образом, состояние элементарной частицы всегда оказывается неопределенным. Но если исходное состояние не может быть точно определено, то тем более оказывается неопределенным последующее состояние частицы. Важно, что такая неопределенность присуща не только положению частицы в пространстве, но и ее энергетическому состоянию. Следовательно, с физической точки зрения неопределенность оказывается неотъемлемым свойством всякого физического взаимодействия во всех формах его проявления.

Развитие теории элементарных частиц и квантовой механики позволило поставить ряд фундаментальных физических и философских проблем. Во-первых, это вопрос о неисчерпаемости физической реальности вглубь. Подобно тому, как Эйнштейн и Инфельд доказали теорему, согласно которой общая теория относительности дает столь полное описание движения, что никакой дальнейший качественный прогресс в этой области уже невозможен, точно так же фон Нейман доказал теорему о скрытых параметрах. Согласно этой теореме, законы квантовой механики - это последняя ступень в описании физических взаимодействий в микромире. Более глубокого описания не может быть. Если скрытые параметры и существуют, то они не могут проявиться. Поэтому законы квантовой механики могут основываться не на других физических закономерностях, а лишь на законах больших чисел, то есть на математической структуре. В это пункте физика как бы вновь вернулась к пифагорийскому обоснованию физической реальности.

Между тем исследования в области элементарных частиц были направлены на то, чтобы найти более глубокий уровень организации элементарных частиц. Долгое время казалось, что теорема фон Неймана в определенном смысле подтверждается экспериментом. Такое подтверждение видели в том, что при попытке выявить структуру элементарной частицы , найти те частицы, из которых она состоит, каждый раз возникала парадоксальная ситуация, качественно отличная от взаимодействия на микроуровне. Макротела при достаточно сильном внешнем воздействии распадаются на те части, из которых они состоят. В отличие от этого, если мы прикладываем к элементарной частице даже такую энергию, которая превосходит ее собственную, то есть E = M*C2, где M - масса частицы, на которую осуществляется воздействие, она не разрушается, а порождает частицы того же уровня. Поэтому стали говорить, что неисчерпаемость физической реальности на уровне микромира состоит не в том, что есть более глубокий, более тонкий уровень организации, а в том, что многообразие элементарных частиц образует неисчерпаемое множество свойств и взаимосвязей.

И все же стремление найти более глубокий структурный уровень организации материи сохраняется. На этом пути были созданы несколько теорий, которые частично получили подтверждение в эксперименте. Такова, например, теория кварков, теория партонов, то есть частичных частиц, которые не существуют вне целого, то есть вне своей частицы. Хотя сегодня уже открыты сотни элементарных частиц, большинство из них обладают очень коротким периодом жизни, и только несколько частиц являются стабильными, например электрон, протон, фотон, нейтрино.

Всякое взаимодействие на уровне элементарных частиц осуществляется через виртуальные частицы. Они связывают между собой элементарные частицы. Например, посредством пи-мезонов протоны взаимодействуют с нейтронами, благодаря чему атомные ядра устойчивы. Виртуальные частицы остаются до конца непонятыми и весьма загадочными. С одной стороны, они реально существуют, так как без них не было бы взаимодействия, атомные ядра развалились бы, а электроны не могли бы вращаться по атомным орбитам. С другой стороны, их безусловное существование многие теоретики не признают, так как в этом случае нарушается закон сохранения энергии. Поэтому приходится вслед за Гераклитом утверждать, что они одновременно как существуют, так и не существуют.

Благодаря исследованию, области квантовой механики и элементарных частиц появилась возможность по-новому взглянуть на вакуум. Оказалось, что в вакууме постоянно возникают и исчезают парами частицы и античастицы. Однако время их существования настолько мало, что экспериментально обнаружить их невозможно. Обнаружение таких частиц противоречило бы принципу неопределенности Гейзенберга. Именно в силу краткости существования частиц вакуума тела, движущиеся в нем, практически не испытывают сопротивление. Однако специальными экспериментами, основанными на математических моделях, можно косвенно обнаружить появление и исчезновение виртуальных пар частиц и античастиц. Здесь также мы имеем ситуацию, когда частицы присутствуют в вакууме и в то же время их там нет.

Уже в 1930-е годы стало ясно что в основе всех физических явлений лежат четыре вида взаимодействий. Это гравитационное, имеющее решающее значение на макро- и мегауровнях организации физической реальности; электромагнитные, проявляющиеся на микро- и макроуровнях; сильные взаимодействия, определяющие внутриядерные силы; слабые взаимодействия, определяющие распад протонов. При этом сразу возник вопрос: можно ли эти силы свести к некоторому единству, то есть возникла проблема создания единой теория поля. Естественно, что вначале попытались идти тем путем, который всегда давал хорошие результаты, то есть осуществить редукцию одних законов к другим. Так, Эйнштейн много лет пытался создать единую теорию поля, стремясь вывести из общей теории относительности три другие взаимодействия. Неудача, которая постигла его на этом пути, определялась тем, что успешно вывести одно из другого можно лишь тогда, когда это отражает объективную связь. Между тем все четыре взаимодействия являются следствием более общего исходного взаимодействия. Успех появился лишь тогда, когда потребность объяснить Большой взрыв заставила подойти к этой проблеме эволюционно и начать при этом с самого простого - с вакуума. Именно так разрабатывается эта проблема в моделях Большого взрыва. Если первоначально предполагалось, что исходным состоянием эволюции нашей Вселенной было особое, сверхплотное сгущение вещества и энергии, и затем благодаря взрывному процессу пошел синтез элементарных частиц и тем самым возникло то исходное состояние, в котором уже действовали известные нам четыре физические взаимодействия, то в современной космологии в качестве исходного состоянии принимают вакуум.

Большой взрыв рассматривается как флуктуация вакуума, в процессе которой нарушилось относительное равновесие сил притяжения и отталкивания, что и привело к колоссальному выделению энергии.

Таким образом, наша Вселенная возникает из того, что является предельно простым в современной физической реальности, то есть из вакуума, или из «ничего». Гегель в своей «Логике» утверждал, что развитие идет от ничего через нечто к ничему. В.И. Ленину это утверждение показалось сомнительным, он писал по этому поводу, что к ничему бывает, но из ничего не бывает. Но с точки зрения модели Большого взрыва, как раз из «ничего» и возникает наша Вселенная. Ведь само понятие «небытие» в философии Гегеля относительно, поскольку оно тождественно понятию «бытие». Поэтому начинать с бытия или небытия не имеет в этой философии принципиального значения. Каждое из этих понятий непосредственно превращается в другое, давая тем самым понятие «становление». А становление порождает наличное бытие, то есть такую определенность, в которой уже задано качество. Примерно так же дело обстоит и в космологической модели Большого взрыва. Внутреннее противоречие, заложенное в вакууме, порождает процесс, а результат этого процесса - определенность законов физической реальности.

Заключение

Формирование научной картины мира в эпоху становления и развития классического естествознания в значительной степени зависело от быстро изменяющегося отношения между натурфилософским знанием и знанием, основанным на опытном исследовании. Все более усиливающийся приоритет научного знания и в связи с этим акцентированное внимание к методологической и гносеологической проблематике привел к замене натурфилософской картины мира концепциями природы, в центре которых оказывались фундаментальные для данной эпохи области естествознания.

В то же время процесс формирования подлинно научной картины мира был достаточно противоречив. Так, хотя натурфилософия и гуманизм оказали разрушительное влияние на средневековую схоластику, они быта еще не в состоянии полностью вытеснить миросозерцание элементов схоластического перипатетизма и мистики. Лишь с возникновением классической механики и астрономии основанных на аксиоматике и развитой математике, картина мира приобретает существенные черты научного миросозерцания. Выдающуюся роль в этом процессе сыграла новая гелиоцентрическая парадигма Коперника, галилеевский образ науки, ньютоновская методология в построении системы мира. Стало возможным формирование научной картины мира, в основе которой лежало эмпирически обоснованное знание.

На данный момент наукой установлено огромное многообразие материальных объектов, представляющих микро, макро и мега миры, но остается открытым вопрос, исчерпывают ли эти открытия все существующее вообще. Многообразие материи и её движение бесконечно, при чем не только количественно, но и качественно. Принцип качественной бесконечности природы, означает признание неограниченного многообразие структурных форм материи, различающихся самыми фундаментальными законами бытия.

Список использованной литературы

  1. Введение в историю и философию науки. М.: Академический Проект,  2005 -407 с.
  2. Войтов, А.Г. История и философия науки: учебное пособие для аспирантов - М.: Дашков и К, 2007 – 691 с.
  3. Горелов А. А. Концепции современного естествознания. - М.: Центр, 2007. -226 с.
  4. Гусейханов М. К., Раджабов О. Р. Концепции современного естествознания. -М.: ИТК «Дашков и К°», 2008. – 378 с.
  5. Небел Б. Наука об окружающей среде. Как устроен мир. - М.: Мир, 2010. - 280 с.




Похожие работы, которые могут быть Вам интерестны.

1. Шпаргалка по истории средних веков

2. Регулирование корпораций уставами и регламентами в раннее Новое время на примере уставов и регламентов г. Реймса

3. Развитие права собственности во Франции в конце XVIII - начале XIX веков

4. Развитие физики как науки. Физическая картина мира. Роль внутренних и внешних факторов в формировании физической картины мира

5. Развитие творческих способностей учащихся коррекционной школы VIII вида во внеурочное время

6. АЛГОРИТМ. ФОРМЫ ПРЕДСТАВЛЕНИЯ. СПОСОБЫ ПРЕДСТАВЛЕНИЯ И ЗАПИСИ АЛГОРИТМОВ. ОПИСАНИЕ ИЗВЕСТНЫХ АЛГОРИТМОВ

7. Изменения в организме женщины во время беременности. Стоматологические заболевания во время беременности. Своевременная диагностика и профилактика стоматологических заболеваний

8. Рабочее время и время отдыха

9. Система оздоровительной тренировки в античности: реалии и древнегреческая терминология

10. Физические и химические процессы в техносфере шпаргалка